• Title/Summary/Keyword: Matrix functions

Search Result 750, Processing Time 0.032 seconds

Estimable Functions of Fixed-Effects Model by Projections (사영을 이용한 고정효과모형의 추정가능함수)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.553-560
    • /
    • 2014
  • This paper deals with estimable functions of parameters of less than full rank linear model. In general, the parameters of an overspecified model are not uniquely determined by least squares solutions. It discusses how to formulate linear estimable functions as functions of parameters in the model and shows how to use projection matrices to check out whether a parameter or function of the pamameters is estimable. It also presents a method to form a basis set of estimable functions using linearly independent characteristic vectors generating the row space of the model matrix.

Effects of Electrode and Matrix in the PAFC Performance (전극 및 메트릭스가 인산형 연료전지의 성능에 미치는 영향)

  • Kim, Dong-Jin;Song, Rak-Hyun;Lee, Byung-Rok;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1873-1875
    • /
    • 1999
  • The effects of electrode and matrix in the PAFC were investigated using AC-impedance spectroscopy. The performance of PAFC was determined by changing external electronic load. AC impedance measurement was carried out as functions of phosphoric acid impregnation temperature. operating temperature and matrix coating method using various cathodes ; 20%Pt/C, 20%Pt-Ni/C, 20%Pt-Co-Ni/C, 10%Pt-Fe-Co/C, and 20%Pt-Fe-Co/C From the analysis of measured impedance data, the interfacial resistance decreased with increasing operating temperature. and with decreasing impregnation temperature. As compared with the alloy catalysts, Pt catalyst showed a lower interfacial resistance. This consist with the cell performance.

  • PDF

Output only structural modal identification using matrix pencil method

  • Nagarajaiah, Satish;Chen, Bilei
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.395-406
    • /
    • 2016
  • Modal parameter identification has received much attention recently for their usefulness in earthquake engineering, damage detection and structural health monitoring. The identification method based on Matrix Pencil technique is adopted in this paper to identify structural modal parameters, such as natural frequencies, damping ratios and modal shapes using impulse vibration responses. This method can also be applied to dynamic responses induced by stationary and white-noise inputs since the auto- and cross-correlation function of the two outputs has the same form as the impulse response dynamic functions. Matrix Pencil method is very robust to noise contained in the measurement data. It has a lower variance of estimates of the parameters of interest than the Polynomial Method, and is also computationally more efficient. The numerical simulation results show that this technique can identify modal parameters accurately even if the noise level is high.

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Space (직교배열표를 이용한 이산공간에서의 최적화 알고리즘 개발)

  • Yi, Jeong-Wook;Park, Joon-Seong;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.408-413
    • /
    • 2001
  • The structural optimization is carried out in the continuous design space or discrete design space. Methods for discrete variables such as genetic algorithms are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete design space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions for constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

  • PDF

Two Dimensional Vibration Analysis of Cranck Shaft by Using Transfer Matrix Method (전달매트릭스법을 이용한 크랭크축의 2차원 진동해석)

  • 김광식;오재응;김만복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.455-462
    • /
    • 1991
  • This paper present an analysis method of crankshaft of four cylinder internal combustion engine for studying dynamic characteristics of the shaft. For simple analysis, uniform sections of journal, pin and arm parts were assumed. Transfer Matrix Method was used, considering branched part and coordinate transformation part. Natural frequencies, natural modes and transfer functions of crank shaft were investigated based upon the Timosenko beam theory: It was shown that the calculated natural frequencies, modeshapes agree well with the experimental results.

Relaxed Stability Condition for Affine Fuzzy System Using Fuzzy Lyapunov Function (퍼지 리아푸노프 함수를 이용한 어파인 퍼지 시스템의 완화된 안정도 조건)

  • Kim, Dae-Young;Park, Jin-Bae;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1508-1512
    • /
    • 2012
  • This paper presents a relaxed stability condition for continuous-time affine fuzzy system using fuzzy Lyapunov function. In the previous studies, stability conditions for the affine fuzzy system based on quadratic Lyapunov function have a conservativeness. The stability condition is considered by using the fuzzy Lyapunov function, which has membership functions in the traditional Lyapunov function. Based on Lyapunov-stability theory, the stability condition for affine fuzzy system is derived and represented to linear matrix inequalities(LMIs). And slack matrix is added to stability condition for the relaxed stability condition. Finally, simulation example is given to illustrate the merits of the proposed method.

SOME IDENTITIES ASSOCIATED WITH 2-VARIABLE TRUNCATED EXPONENTIAL BASED SHEFFER POLYNOMIAL SEQUENCES

  • Choi, Junesang;Jabee, Saima;Shadab, Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.533-546
    • /
    • 2020
  • Since Sheffer introduced the so-called Sheffer polynomials in 1939, the polynomials have been extensively investigated, applied and classified. In this paper, by using matrix algebra, specifically, some properties of Pascal and Wronskian matrices, we aim to present certain interesting identities involving the 2-variable truncated exponential based Sheffer polynomial sequences. Also, we use the main results to give some interesting identities involving so-called 2-variable truncated exponential based Miller-Lee type polynomials. Further, we remark that a number of different identities involving the above polynomial sequences can be derived by applying the method here to other combined generating functions.

The Interpretation Stability Uncertain Bound for the Uncertain Linear Systems via Lyapunov Equations (Lyapunov 방정식을 이용한 불확실한 선형 시스템의 안정한 섭동 유계 해석)

  • Cho, Do-Hyeoun;Lee, Sang-Hun;Lee, Jong-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.4
    • /
    • pp.26-29
    • /
    • 2007
  • In this paper, we use Lyapunov equations and functions to consider the linear systems with perturbed system matrices. And we consider that what choice of Lyapunov function V would allow the largest perturbation and still guarantee that V is negative definite. We find that this is determined by testing for the existence of solutions to a related quadratic equation with matrix coefficients and unknowns the matrix Riccati equation.

A New Unified Scheme Computing the Quadrature Weights, Integration and Differentiation Matrix for the Spectral Method

  • Kim, Chang-Joo;Park, Joon-Goo;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1188-1200
    • /
    • 2015
  • A unified numerical method for computing the quadrature weights, integration matrix, and differentiation matrix is newly developed in this study. For this purpose, a spline-like interpolation using piecewise continuous polynomials is converted into a global spline interpolation formula, with which the quadrature formulas can be derived from integration and differentiation of the transformed function in an exact manner. To prove the usefulness of the suggested approach, both the Lagrange and tension spline interpolations are represented in exactly the same form as global spline interpolation. The applicability of the proposed method on arbitrary nodes is illustrated using two different sets of nodes. A series of validations using three test functions is conducted to show the flexibility in selecting computational nodes with the present method.

The Fracture Toughness and Crack Propagation behavoir of Short-fiber Reinforced Ruber (단섬유 강화고무의 파괴인성 및 크랙진전 거동)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.85-90
    • /
    • 2000
  • The fracture toughness and crack propagation behaviors of short nylon66 fiber reinforced Chloroprene rubber nave been Investigated as functions of fiber aspect ratio, fiber content and interphase conditions. The J for crack initiation and rupture were determined for short-fiber reinforced rubber. The values of $J_c$ for most reinforced rubbers were low compared that of matrix. But, $J_r$ at rupture showed a higher value than that of matrix. The crack propagation behaviors were analyzed into 3 patterns with increasing fiber aspect ratio and fiber content. The tearing mechanisms of matrix and fiber reinforced rubber were observed by CCD camera focused on the tip of crack and load-displacement graph. Both cases showed a completely different behaviors

  • PDF