• Title/Summary/Keyword: Matrix factorization

Search Result 309, Processing Time 0.023 seconds

Robust Speech Hash Function

  • Chen, Ning;Wan, Wanggen
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.345-347
    • /
    • 2010
  • In this letter, we present a new speech hash function based on the non-negative matrix factorization (NMF) of linear prediction coefficients (LPCs). First, linear prediction analysis is applied to the speech to obtain its LPCs, which represent the frequency shaping attributes of the vocal tract. Then, the NMF is performed on the LPCs to capture the speech's local feature, which is then used for hash vector generation. Experimental results demonstrate the effectiveness of the proposed hash function in terms of discrimination and robustness against various types of content preserving signal processing manipulations.

An Analysis on Worst-case State Estimation in Standard H$\infty$ State-Space Solution

  • Choi, Youngjin;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.56-59
    • /
    • 1996
  • Worst-case state estimation will be proposed in this paper. By using the worst-case disturbance and worst-case state estimation, we can obtain right/left constrained coprime factors. If constrained coprime factors are used in designing a controller, the infinity-norm of closed-loop transfer matrix can be smaller than any constant .gamma.(> .gamma.$_{opt}$) without matrix dilation optimization. The derivation of left/right constrained coprime factors is achieved by doubly coprime factorization for the plant constrained by the infinity norm. And the parameterization of stabilizing controllers gives us easily understanding for H$_{\infty}$ control theory.ry.

  • PDF

Parametric Approaches for Eigenstructure Assignment in High-order Linear Systems

  • Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.419-429
    • /
    • 2005
  • This paper considers eigenstructure assignment in high-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related with a type of so-called high-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically very simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effect of the proposed approaches.

Generic Text Summarization Using Non-negative Matrix Factorization (비음수 행렬 인수분해를 이용한 일반적 문서 요약)

  • Park Sun;Lee Ju-Hong;Ahn Chan-Min;Park Tae-Su;Kim Ja-Woo;Kim Deok-Hwan
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.469-472
    • /
    • 2006
  • 본 논문은 비음수 행렬 인수분해(NMF, non-negative matrix factorization)를 이용하여 문장을 추출하여 문서를 요약하는 새로운 방법을 제안하였다. 제안된 방법은 문장추출에 사용되는 의미 특징(semantic feature)이 비 음수 값을 갖기 때문에 잠재의미분석에 비해 문서의 내용을 정확하게 요약한다. 또한, 적은 계산비용을 통하여 쉽게 요약 문장을 추출할 수 있는 장점을 갖는다.

  • PDF

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL SOLVER ON BLOCK LANCZOS METHOD

  • Byun, Wan-Il;Kim, Seung-Jo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The IPSAP which is a finite element analysis program has been developed for high parallel performance computing. This program consists of various analysis modules - stress, vibration and thermal analysis module, etc. The M orthogonal block Lanczos algorithm with shiftinvert transformation is used for solving eigenvalue problems in the vibration module. And the multifrontal algorithm which is one of the most efficient direct linear equation solvers is applied to factorization and triangular system solving phases in this block Lanczos iteration routine. In this study, the performance enhancement procedures of the IPSAP are composed of the following stages: 1) communication volume minimization of the factorization phase by modifying parallel matrix subroutines. 2) idling time minimization in triangular system solving phase by partial inverse of the frontal matrix and the LCM (least common multiple) concept.

  • PDF

Personalized Document Summarization Using NMF and Clustering (군집과 비음수 행렬 분해를 이용한 개인화된 문서 요약)

  • Park, Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.151-155
    • /
    • 2009
  • We proposes a new method using the non-negative matrix factorization (NMF) and clustering method to extract the sentences for personalized document summarization. The proposed method uses clustering method for retrieving documents to extract sentences which are well reflected topics and sub-topics in document. Beside it can extract sentences with respect to query which are well reflected user interesting by using the inherent semantic features in document by NMF. The experimental results shows that the proposed method achieves better performance than other methods use the similarity and the NMF.

  • PDF

DCT/DFT Hybrid Algorithm using Simple Element Inverse (단순 엘레멘트 인버스를 이용한 DCT/DFT 하이브리드 알고리즘)

  • Lee, Kwang-Jae;Park, Dae-Chul;Lee, Moon-Ho;Sin, Tae-Chol;Chen, Zhu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6C
    • /
    • pp.594-599
    • /
    • 2007
  • In this paper, we present new representation of DCT/DFT matrices via one hybrid architecture. Based on a element inverse matrix factorization algorithm, we show that the DCT and DFT have a same recursive computational pattern, and we can develop an hybrid architecture by using some diagonal matrices.

A Fractional Model Reduction for T-S Fuzzy Systems with State Delay

  • Yoo Seog-Hwan;Choi Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.184-189
    • /
    • 2006
  • This paper deals with a fractional model reduction for T-S fuzzy systems with time varying delayed states. A contractive coprime factorization of time delayed T-S fuzzy systems is defined and obtained by solving linear matrix inequalities. Using generalized controllability and observability gramians of the contractive coprime factor, a balanced state space realization of the system is derived. The reduced model will be obtained by truncating states in the balanced realization and an upper bound of model approximation error is also presented. In order to demonstrate efficacy of the suggested method, a numerical example is performed.

A Signal Separation Method Based on Sparsity Estimation of Source Signals and Non-negative Matrix Factorization (음원 희소성 추정 및 비음수 행렬 인수분해 기반 신호분리 기법)

  • Hong, Serin;Nam, Siyeon;Yun, Deokgyu;Choi, Seung Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.202-203
    • /
    • 2017
  • 비음수 행렬 인수분해(Non-negative Matrix Factorization, NMF)의 신호분리 성능을 개선하기 위해 희소조건을 인가한 방법이 희소 비음수 행렬 인수분해 알고리즘(Sparse NMF, SNMF)이다. 기존의 SNMF 알고리즘은 개별 음원의 희소성을 고려하지 않고 임의로 결정한 희소 조건을 사용한다. 본 논문에서는 음원의 특성에 따른 희소성을 추정하고 이를 SNMF 학습알고리즘에 적용하는 새로운 신호분리 기법을 제안한다. 혼합 신호에서의 잡음제거 실험을 통해, 제안한 방법이 기존의 NMF와 SNMF에 비해 성능이 더 우수함을 보였다.

  • PDF

Deep Neural Network-Based Beauty Product Recommender (심층신경망 기반의 뷰티제품 추천시스템)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.