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Abstract

This paper deals with a fractional model reduction for T-S fuzzy systems with time varying delayed states. A contractive coprime

factorization of time delayed T-S fuzzy systems is defined and obtained by solving linear matrix inequalities. Using generalized

controllability and observability gramians of the contractive coprime factor, a balanced state space realization of the system is derived. The

reduced model will be obtained by truncating states in. the balanced realization and an upper bound of model apbroximation error is also

presented. In order to demonstrate efficacy of the suggested method, a numerical example is performed.
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1. Introduction

For linear finite dimensional systems with high orders,
optimal control techniques such as LQG and H_ control
theory, usually produce controllers with the same state
dimension as the model. Accordingly the problem of model
reduction is of significant practical importance in control
system design and has been a focus of a wide variety of studies
for decades (see [1-6] and the references, therein).

The stability analysis and control of time delayed systems
are problems of practical and theoretical interest since many
types of processes such as steel making process and chemical
process can be modeled as dynamic systems with time delay. In
the last decade, the linear matrix inequality (LMI) based
controller design method for delayed systems has been
developed remarkably [7-9]. A drawback of the LMI based
controller synthesis is that computational requirements increase
rapidly as the state dimension increases. Therefore the state
dimension must be kept as low as possible. In the last decade,
several research works related to approximation of linear
systems  with  uncertain  parameters  have  been
performed.[5,10,11] More recently, a balanced model reduction
method for quadratically stable T-S fuzzy system with time
varying delay (FSTVD) is suggested in [12].

But model approximation is mainly focused to quadratically
stable systems.  Moreover not much works for model
reduction of unstable nonlinear systems with state delay have
been proposed as far as we know. This motivates our study for
a fractional model reduction of FSTVD. In this paper we
introduce a contractive coprime factorization of FSTVD and
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study an approximation technique based on balanced truncation
of the contractive coprime factor. We obtain an
approximation model by truncating a part of the state variables
of the system’s coprime factor. This implies that we are
trying to keep the coprime factor of the approximation system
closed to the coprime factor of the original time delayed system.

We begin by defining a FSTVD and introduce preliminary
definitions for model reduction in section 2. A contractive
right (left) coprime factorization is introduced in section 3.
Model reduction in the coprime factor of the FSTVD is studied
in Section 4. Section 5 gives a numerical example to validate
the results developed in the previous sections.

In this paper, the notation is fairly standard. R" denotes »
dimensional real vector spaces and R™ means the set of
nxm dimensional real matrices. M7 stands for the
transpose of M . 0 and I, denote the zero matrix and the
nxn dimensional identity matrix respectively. In a symmetric
block matrix, * in the (i,j) block means the transpose of
the submatrix in the (j,i/) block. M <(£)0 means that
M is negative definite (semi-definite) matrix. T, and T.”'
with a subscript * denote the system and the inverse system
respectively. Finally ||I“,,||m denotes the H_ norm of the

system I',.

2. Preliminary

We consider the following class of FSTVD.
PlantRule i (i=1,--,r):
IF p(r) is M, and ---
THEN

and p (1) is M.
X(1) = Ax(t)+ Aux(t —d(1)) + Bu(1),

1
(1) =Cx(1), M
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where r is the number of fuzzy rules. p,(r) and M,
(j=1,--,g ) are the premise variables and the fuzzy set
respectively. x(r)e R" is the state vector, u(r)e R™ is the

input, y(¢)e R’ is the output variable and 4, 4,,---,C, are
real matrices with compatible dimensions. We define
A,=FG, where F,e R™, GeR™ . Note that F, and

G are not necessarily full rank matrices. The easiest choice
might be F,=4,,G=1,. We also assume that time varying
delay d(r) satisfies

0<d(f)<oo, )d(z)\ <B. @)

Let ,(p(¢),i=1,---,r, be the normalized membership

function of the inferred fuzzy set #,(p(r)),
n{p())

p(p(t) =
Y h(p(0) 3

where,

h,(p(z>)=fIMy(pj<t)), pO=[p0 £ ~ p]. @)

In this paper, we assume forall 20,

h(p(0)20 (i=1,2,-,r), gh[(p(t)) > 0. 5
Then, we obtain

1P 20 (1=1,2,--,7), gﬂf<p<z>) -1 ®
For simplicity, we define

i= 1 (), (=12, 1" =g, - w]. (D)

As shown in fig.1, the fuzzy system (1) can be written as
follows:

(1) = A x(0) + F(u)w(t) + B(u)u(?)

= Z 1, (Ax(t) + FEw(t) + Bu(t)),

Y0 = Cuyx(t) = Y 4 Cox(), ®)

2(t) = Gx(1),
w(t) = ©(1)z(r) = Gx(i ~ d(1)),

where,  ©O() w(t) and z(¢) are
variables introduced to express the time delay. Thus w(s) and

is a delay operator.

z(¢) are an output and input of the delay operator respectively.
In a packed matrix notation, we express the fuzzy system (8)
as follows:

Aw) | F(w) | B(w)
r,= G{ 0 1 0 | ®

w(r) (1) z(f)

X(r) = AQO)x() + F (Y + Bl [
) »(n) =(.:(/1.)»\'(f). v
(1) = Gx(n)

fig. 1 The fuzzy system with time delay

Now we state some definitions for our development.

Definition 1(Bounded Real Lemma) : If there exist
X=X">0, §=5 >0 satisfying LMI (10), |[,|. <y is
achieved in FSTVD (9).

A X + XA(uy+ y2C(u)’ C(u)+ G SG
F(u) X
B(u)' X
(1) (10)

*

—(1-/s * |<o.
0 -1

m

Definition 2(Generalized Gramian) : Suppose that [,
in (9) is quadratically stable. When there exist 0=0" >0
and R=R" >0 satisfying LMI (11) for all u, we say that
Q is a generalized observability gramian of the system T',.

A" O+ QA(u) + C () C(u) * *
L= F'Q ~(I-HR  * |<0.(11)
RG 0 -R

If there exist P=P" >0 and S=S" >0 such that LMI
(12) holds for all x4, P is a generalized controllability
gramian of the system T, .

PA()" + AP + B(u)B(u)” * *
L= SE(u)" -1-/5 * |<0.(12)
GP 0 -S

Remark 1: Generalized controllability and observability
gramians defined in definition 2 are not unique contrary to the
linear time invariant case.

Now we briefly state a balanced model reduction scheme
using generalized controllability and observability gramians.
Suppose that the system @', in (9) is quadratically stable.
Then Q=Q">0 , R=R">0 , P=P >0 and
§=5">0 can be computed from LMI’s (11) and (12). Let
nonsingular matrices 7 and U be such that

T7'PTT =TTQT =% =diag(0,,0,,+,0,),
620,220,

(13)

U'SUT =UTRU =11. (14)
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Using T and U defined in (13) and (14), the change of

coordinates in I', gives

TAWTT _lff(_/f)_‘{ﬁf_'?_(é‘)

A (1) A, () | Fa(w) | B, (1) (15)

G, G, | 0 o |

Cowyi 0 | 0

where A4, (£)e R, A4,,(i)e R"™™ and the other
matrices are compatibly partitioned.

We obtain a v dimensional reduced order system of I,
as follows:

= G, ! 0 0 | (16)
Cawy i 0 | 0

It was proved that the approximation error is bounded by
"rp -1,[ <2Y 5, 112

i=v+]

3. Contractive Coprime Factorization

In this section, we extend some of the results on coprime
factorization of linear time invariant system to the FSTVD. For
model reduction, we focus on the contractive coprime
factorization which is analogous to the normalized coprime
factorization of linear time invariant systems.

Definition 3 : Let I', be a system given in (9). ', admits

a quadratically stable proper right coprime(left coprime)
factorization if there exist quadratically stable systems I, ,
r,, Iy, I,(I;,I;,T;,0,) such that T, =r,r,”,
I+, =1 ( [,=T,7T, , T, +C,=1 )
Moreover we say that the pair (I', I, ) (I;.T;)) is a
contractive right coprime(left coprime)  factorization if
Dol <, <o,

oo

First, we obtain a coprime factorization of the FSTVD T',.

K(u) and L{u) are
quadratically stabilizing state feedback and output injection

Lemma 1 Suppose  that

matrix of the system I',. Define
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| A+ BOK () | () | Bty —L()
r, ;] G o o 0
r, r.|” C(u) b o ' 0 1, T
L K L I S
A+ LunCQ) | FG | LG B
r, r,1_ G To o 0
r, -I.|° K{(u) i 0 0 I,
L C(w) o], 0
(17)
Then,
F X ry FN l—‘); _
[an —F,J[FM F)}J—I. (18)

Proof : The proof will be omitted due to lack of space.

The next theorem states that a contractive coprime
factorization of the FSTVD T,
solutions of LMI’s.

can be obtained using

Theorem 2: Suppose that there exist Z; = Z]T >0,
R=RI>0, Z,=2]>0 and Ry=R} >0 satistying
matrix inequalities (19) and (20) forall x.

1
Z AW + A(WZ, - " +——F(WR "
A(p) + Az, — B(u)B(u) +1_ B (WRF() (19)

+Z,G'R'GZ,+ ZC(w) C(u)Z, <0,

AY Z, + Z,4(1) ~ C(u) C() + G"R,G
1 -
+1-_322F(,U)R2lF(ﬂ)TZz +Z,B(u)B(u)' Z, <0.
Then the pair (T,.I,,) ((T';,I';;)) is a contractive right
coprime(lefi coprime) factorization of I',, where

A()+BUDK () | F(u) }B(ﬂ)

(20)

r, | ¢ G

[FM]'_ C(u) Lo ) o @b
K(w) |

K(u)=-B(wy' Z;",

[Ty Tyl= G Lo
C)
Ly =~Z;'C(w)".

Proof : We restrict ourselves to the contractive right coprime
case. The proof for the left coprime case can be performed
similarly.

With the definition K(&) in (21) and by defining
P=Z"" and S, =R, matrix inequality (19) is equivalent to
the existence of BZ=A" >0 and §,=S" >0 satisfying
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(A() + BUOK ()Y B+ B(A) + BOK (1) + C (Y C(k)
K0 K (1) + GTS,G+ I—_I?EF(/!)S{'F(#)TR <0.
23)

Thus, K(u) is a quadratically stabilizing state feedback gain
matrix. It is easy to show I, =I,I",,", so will be omitted.
For a quadratically stabilizing output injection matrix L{x) ,
define quadratically stable FSTVD T'y and [y as follows:

A+ L)CW) | F(u) | L) —B()
[r, I,]= G

0 0 | 4
K@)

Then it is obvious that I'yI'y +I'yI'y, =1 from Lemma 1.

Now it suffices to prove ||F R”m <1, where

A()+BK () | F(u) FB(#)

[FN:‘ G 0 0
T, = = : . (@5
r, Cc(u) Po ! 0

K1) IV I

From definition 1 and using Schur complement, “F R“m <1l is

equivalent to the existence of X = XT>0 and S=8T>0

satisfying
Ly *
<0, 26

[B(ﬂ)TX —Im} e

where

Ly (1) = (A() + BUDK (1)) X + X (A1) + BUHK (1))
+C(u)" C(uy + K(u)' K(1)+G'SG

+;XF(,u)S"F(,u)TX.
1-p
We know that X=P, S=S, and K(u)=-B(u)'P
solve matrix inequality (26). This completes the proof.

Remark 2: Z and R, satisfying the matrix inequality
(19) can be computed by solving following LMI (27). Z, and
R, satisfying the matrix inequality (20) can also be computed

similarly.
d, <0, foralli=1,---,r, 27
D+, <0, foralli=1,---,r, j=it+l, 1, @7
where,
z,4] + 4,7, - B,BT * o
T
o, = RF, ~(1-pR,  * *
GZ, 0 R *
CIZI 0 0 _[P

4. Fractional Balanced Model Reduction

Up to now, we defined a contractive coprime factorization.
In this section, we present a balanced realization and a model
reduction scheme in the contractive coprime factor of FSTVD
r,.

Generalized controllability gramian P and observability
gramian Q of the right coprime factor I'p can be obtained
as solutions satisfying LMI’s (28) and (29).

LC] * *
L =|SFu)" —-(1-pS * |<0, (28)
GP 0 -5
where,
L, = P(A(u)+ B)K (1)) + (A(u)+ B()K (1)) P
+B(u)B(u)
Lol * *
L=|F(w'Q -(1-pHR * |<0, (29)
RG ] -R
where,

= (A() + BUDK (1)) Q + Q(AW) + BUHK (1) ‘
+C()" C)+ K (1) K ()

The following lemma states that P,Q,R,S satisfying
LMTI’s (28) and (29) can also be obtained from solutions of
matrix inequalities (19) and (20).

Lemma3:Let Z,R, Z,,R, be solutions of (19) and (20).
Then, Q=2~" , R=R™ , P=(Z'+Z,)" and
S=(R"'+R,)" solve LMI’s (28) and (29).

Proof : The proof will be omitted due to lack of space.

As described in (7) and (8), we compute 7 and U using
P,O,R,S obtained from lemma 3. With transformation
matrices T and U , define a balanced realization of the
system I'p as

T (A + BUDK )T | TFUU | T7B(p)
_— U~GT T 0
f cur Lo 0
KT P0 I,
A+ By (K, (1) Ay(i)+ By()K,, (1) | Fy(0) | Bu(r)
A 1)+ B UKy (1) A (1) + Ba(K (1) | Fy(p) LB“ )
=TT G, G, Vo 0o |
Ca(w) G, (1) Poo l 0
K1) Ko () booo |,
(30)

where A, (1)e R™, 4,,,(1)e R"™7 ™ and the other
matrices are compatibly partitioned. Let f“R be the reduced
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order system with v states obtained by truncating I',. T'p
can be described as follows:

f - f‘l\‘ _ ) _Gbl ) _: -_6__
R T~ - [}
£, ) Fo
K,y (1) 0

Finally we associate fR the following FSTVD fP with
v states.

(32)

From [12], the following lemma is immediate.

Lemma 4 : The reduced order fk is quadratically stable
and balanced. Moreover, the reduction error is bounded by
-1 <2) o,

i=v+]

Remark 3: Suppose that fk is a controller stabilizing
the reduced order system [',. Thus (/+1,0,)'T I, is
stable. By the small gain theorem, (I+T,I',)"'T,[', isalso
fM“(1+foP)“[fK 1]

stable if and only if

< ] ~
FR—FR

<

1=

holds.

5. Numerical Example

We now describe a numerical algorithm for fractional model
reduction. In order to get a less reduction error bound, it is
necessary for o,,,---,0, to be small. Hence we choose a

cost function as J=race(PQ)=Y o} . Thus, we will
i=]

minimize the non-convex cost function subject to convex
constraints. This optimization problem is very difficult to solve
it. So, we suggest a suboptimal procedure using an iterative
method. From the results of lemma 3, the cost function can be
written as

J =trace(PQ) = trace(l + Z)* Z,7)"* )"

33
=rtrace(l + 2y Z2,Z)%)™. )

step | : Set i=0.Initialize Z,; as a positive definite matrix.
step2:Set i=i+]l.
1) Minimize J, =trace(] + 2}/, Z,,Z}'2)™" subject to (19).

2) Minimize J, =trace(I +Z,’Z,,Z//*)™" subject to (20).
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step 3 : If ]J[ —JHI is less than a small tolerance level stop
iteration, otherwise go to step 2.
We consider a FSTVD with 2 rules given by

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
5A2= )
0 0
1

4=
0 0 1 0 0 1
I =12 -3 -5 -14 -5 -6
0 01 0 O 0 01 0 0
0 0 01 0O 0 0 01 O
4= s Ap = 4
0 0 01 0 0 0 02 0
0o 0 0 0.l 0 0 0 02
0 1
0 0
B=B=| | T =cl=| |
1 0
and ld(t)\so.l . For convenience, we  choose

F=A4,,F,=4,,G=1.1Tt is easy to show that this fuzzy
system is unstable. Accordingly the conventional balanced
truncation method can not be applied to this system[12].

Using an initial estimate Z,, =1/, we obtain the balanced
gramian X = diag(1,0.9584,0.9495,0.1961) . By truncating the
last state variable, we obtain the truncated right coprime factor
fk in (31) and the associated FSTVD f,, in (32), where

[0.047 3782 27.51]
Ay =|—0.002 =0.094 1.710 |,
| 00 -1411 —0.057]
[0.047 -1.501 16.53 |
Ay =[~0.002 -0.417 1.619
| 0.0 —1.583 -0.105|
4996 7.142 5230 0.0
Fy,,=| 0007 0321 -0.024 0.0,
—0.017 -0.185 -0.129 0.0
48.84 35.14 -1.850 0.0
F,,,=[-0.004 0546 -0.085 0.0,
-0.041 —-0.117 —0.184 0.0
~71.6 -0.001
By, =B, =|~0.588|,C,, =Cpy, =| 0.133 |,
-0.313 -0.036
0.0006 0.404 —0.286
—-0.0001 0.454 0.144
"= 00001 0.011 =0.013
—0.0000 0.000 —0.0002

From lemma 4, we can expect that an upper bound of the
reduction error in the right coprime factor is 0.3922.
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6. Conclusion

In this paper, we have studied a fractional model reduction
for a FSTVD. A contractive coprime factorization analogous to
the normalized coprime factorization of the linear time
invariant systems is derived by solving LMI’s. Based on the
contractive coprime factor, a balanced realization is obtained
from generalized controllability and observability gramians
which can be computed from solutions of LMI’s. However,
from a numerical example we observe that the upper bound of
reduction error is conservative. The conservativeness may
follow from the optimization problem which has the non-
convex cost function. But we think that the proposed method
may be suitable for model reduction of a class of FSTVD
which are not quadratically stable.
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