

Received by the editors December 29 2008; Accepted February 20 2009.
2000 Mathematics Subject Classification. 68W10, 68W40.
Key words and phrase : Block Lanczos Method, Parallel Performance Enhancement, Eigenvalue Problem,

Mutifrontal algorithm, IPSAP.
† Corresponding author.

 13

J. KSIAM Vol.13, No.1, 13-20, 2009

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL
SOLVER ON BLOCK LANCZOS METHOD

Wanil BYUN1 AND Seung Jo KIM1,2†

1SCHOOL OF MECHANICAL AND AEROSPACE ENG, SEOUL NATIONAL UNIV, SOUTH KOREA
E-MAIL address: wibyun@aeroguy.snu.ac.kr
2FLIGHT VEHICLE RESEARCH CENTER, SEOUL NATIONAL UNIV, SOUTH KOREA
E-MAIL address: sjkim@snu.ac.kr

ABSTRACT. The IPSAP which is a finite element analysis program has been developed for high
parallel performance computing. This program consists of various analysis modules – stress,
vibration and thermal analysis module, etc. The M orthogonal block Lanczos algorithm with shift-
invert transformation is used for solving eigenvalue problems in the vibration module. And the
multifrontal algorithm which is one of the most efficient direct linear equation solvers is applied to
factorization and triangular system solving phases in this block Lanczos iteration routine.
In this study, the performance enhancement procedures of the IPSAP are composed of the following
stages: 1) communication volume minimization of the factorization phase by modifying parallel
matrix subroutines. 2) idling time minimization in triangular system solving phase by partial inverse
of the frontal matrix and the LCM (least common multiple) concept.

1. INTRODUCTION

Structural vibration analysis considered in IPSAP is to obtain eigenvalues and
eigenvectors of the eigen problem of symmetric positive semi-definite stiffness and mass
matrix which are obtained by the finite element method. The eigenvalue problem of
structural vibration is of the form:

K λM (1)

Since the stiffness and the mass matrix are symmetric and semi-definite, the well-known

Lanczos iteration is applicable to Equation (1). Exactly speaking, the shifted invert
transformation as in Equation (2) should be used in presence of the mass matrix M.

LT LT K σM LLT (2)

The shifted eigenvalue α is associated with original one by the relation α λ σ.

 Wanil BYUN and Seung Jo KIM

14

The matrix L is the lower triangular matrix, where M=LLT. The existence of the inverse of
K σM requires a linear equation solver during Lanczos iterations. The presence of LT
implies that the Lanczos basis should be M orthogonal. It is notable that the restarted
Lanczos iteration [1] has been proposed as an alternative for the shift-invert transform.

2. ALGORITHM

In the shift-invert Lanczos method, a linear equation solver is needed to solve accurately

a linear equation with the coefficient matrix K σM. One of the reliable means is a direct
method [2]. Nowadays, due to the bottleneck in scalability and memory requirement of a
parallel direct solver, iterative linear equation solvers or reduction methods are getting
interest [3-4]. However, since the linear equation solver should be more accurate than the
desired accuracy of eigenvalues, iterative solvers may be less powerful even with its great
parallel scalability and memory efficiency.

In the IPSAP solver, we implemented a parallel block Lanczos eigensolver using M

orthogonal iteration equipped with a direct linear equation solver (Algorithm 2.1).

Algorithm 2.1 M orthogonal block Lanczos algorithm with shift-invert transformation

Let V be a set of initial vectors with VTMV I

 j 0
while(required eigenvalue > converged eigenvalue)

 U MV
 K σM)W U , solve for W
 W W V BT
 C VTMW
 W W VC
 W V B , QR factorize for V

compute eigenvalue of T , j j 1
re-orthogonalize V against V , i 0 j 1

 end

step 1
step 2
step 3
step 4
step 5
step 6
step 7
step 8

Step 2 in Algorithm 2.1 is a linear equation solving procedure which takes most of the

time consumed in structural vibration analysis using Lanczos iteration. The parallel
multifrontal solver was chosen as a linear equation solver. The algorithm of the solver can
be regarded as a FEM-oriented version of a conventional multifrontal solver. This solver
does not require a globally assembled stiffness matrix while the element concept of the
finite element mesh is utilized as graph information. Therefore, the assembly of element
matrices takes place automatically during the factorization phase. The implemented parallel
factorization in the multifrontal solver is the well-known Cholesky factorization

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL SOLVER ON BLOCK LANCZOS METHOD

15

(Algorithm 2.2). It is noteworthy that the factorization needs to be conducted only once
before the Lanczos loop if the shift is not varied.

Algorithm 2.2 Parallel sparse Cholesky factorization

 for i 0, , N 1

 K K SYM
K K

 factorize K , K , update K
 j i
 while rem j, 2 1
 extend_add K with another domain branch in tree
 factorize K , K , update K
 j j 1 /2
 end

end

parallel procedure
 n 1
 while n N
 extend_add K with another processor branch in tree

 factorize K , K , update K
 n 2n
 end

In a matrix form, the Cholesky factorization factorize K , K and the update of a
dense matrix update K can be written in three steps.

K L LT (3)

L K K (4)

K K K TK (5)

Equation (3)-(5) are based on the assumption that the lower part of the symmetric frontal
matrix is active and that the sub-matrix K is allocated according to the memory structure
in Figure 1. The feature of the frontal matrix structure in Figure 1 is that the sub-matrix
K is firstly assigned at the initial position of the allocated memory. Such a structure of
the frontal matrix makes the extend_add K) operation be easily implemented because K
remains always at the head of the allocated memory. If the extend_add operation is

 Wanil BYUN and Seung Jo KIM

16

implemented appropriately, the major communication overhead of the proposed algorithm
is caused by parallel dense matrix operation such as factorize K , K and update K .

FIGURE 1. Memory structure of frontal matrix K

During the phase of solving triangular systems, a forward elimination followed by a

backward substitution is a general procedure. They use the same processor mapping and
frontal matrix distribution of the factorization phase. If the RHS (right-hand side) is
indicated by W, the forward elimination is generally composed of two steps as follows.

L W W (6)

W W K TW (7)

The backward substitution is also completed by the following two steps.

W W K W (8)
LT W W (9)

Here, W is the solution we are looking for. There are many communication overheads
occurring from panel or block broadcast and summation in parallel operation of Equation
(3)-(9). The main objectives of performance enhancement in these routines are to reduce
the total communication volume and to minimize the idling time for transferring panel or
block matrices.

3. PARALLEL PERFORMANCE ENHANCEMENT AND NUMERICAL TEST

Performance tuning of the multifrontal solver is conducted from three points of views.

The first one is to reduce communication occurring in the Cholesky factorization. It is

notable that the naming convention of subroutines used in the eigensolver is based on those
of BLAS (Basic Linear Algebra Subprograms)[5] and LAPACK (Linear Algebra Package)
[6]. As shown in Figure 2, the symmetric frontal matrix is composed of three matrix
entities. Therefore, three routines are required to factorize the frontal matrix. In parallel
matrix operations based on panel communication which are adopted in the present research,
each routine performs panel or block communications which are column(or row)
broadcasting or reducing type. Considering the detailed communication pattern, it is
apparent that some parts of broadcasting or reducing are duplicated. For example, column
broadcasting of panels of K in POTRF is also present in TRSM (Figure 3). If combining

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL SOLVER ON BLOCK LANCZOS METHOD

17

three routines into one is possible, duplicated communications will be avoidable. In Figure
3, they show a communication pattern of one condensation subroutine by combining
duplicated communications among three subroutines.

FIGURE 2. Frontal matrix and factorization routines

FIGURE 3. Communication pattern of each subroutine

Table 1 lists some numerical test comparison without condensation and with

condensation. The condensation subroutine which combines duplicated communications
between nodes and nodes takes less time compared with non-condensation one.

TABLE 1. Numerical test comparison without condensation and with condensation

process map=4x8, block size=100 with 32 nodes (32 CPUs)
matrix dimension without condensation with condensation difference

16000x16000 209.064 sec 201.258 sec -7.806 sec
process map=8x8, block size=100 with 64 nodes (64 CPUs)

matrix dimension without condensation with condensation difference
16000x16000 129.261 sec 122.929 sec -6.332 sec
32000x32000 1018.96 sec 816.922 sec -202.038 sec

 Wanil BYUN and Seung Jo KIM

18

The second performance tuning can be conducted by topology control in panel or block

communication. We implemented two kinds of topology which are ‘increasing ring’ and
‘split ring’. The condensation subroutine is composed of five topology options. Therefore,
there is 32 topology sets. When the topology set is ‘issii’, the best performance in our
parallel environment is achieved (Table 2). It is notable that the best topology set depends
on own network environment.

TABLE 2. Topology comparison of the condensation subroutine

Topology Sets – 32 cases

sssss ssssi sssis sssii ssiss ssisi ssiis ssiii

sisss sissi sisis sisii siiss siisi siiis siiii

issss isssi issis issii isiss isisi isiis Isiii

iisss iissi iisis iisii iiiss iiisi iiiis iiiii

Matrix dimension = 16000x16000, process map = 8x8, block size = 100 with 64 nodes (64 CPUs)

115.432 111.501 116.717 111.242 120.286 113.605 120.819 112.83

120.961 111.241 119.621 113.135 124.059 114.537 122.407 114.573

115.825 110.642 117.704 109.211 120.259 112.433 120.02 111.096

120.185 111.083 121.129 111.52 123.041 113.296 124.083 113.459

Matrix dimension = 32000x32000, process map = 8x8, block size = 100 with 64 nodes (64 CPUs)

607.318 589.898 600.976 586.587 627.982 612.927 624.301 609.839

611.379 593.751 608.472 594.00 638.387 616.156 635.957 614.28

600.697 588.547 598.778 585.828 624.406 608.557 622.545 606.83

611.518 591.975 610.131 590.734 637.907 615.17 633.893 611.836

The last one is to tune the triangular system solving routines. Operations involved in

solving the triangular system are generally composed of TRSM and GEMM with F and
F . Since TRSM routine has data-dependent algorithmic flow, there may be idle processors
between panel broadcasting. One idea to resolve this bottleneck is converting TRSM into
TRMM by computing inverse of L by using TRTRI routine. Although TRMM requires
the same number of floating point operations and communication volume as TRSM does,
the LCM (least common multiple) concept can apparently reduce the idling time. The LCM
concept which is originally proposed in the research of GEMM [7] can also be applied to
any case of data-independent communication pattern. In order to apply such a concept to (6)
and (9), the factorization phase should be modified so that the operation can be conducted
only with matrix multiplication as follows.

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL SOLVER ON BLOCK LANCZOS METHOD

19

L W W (10)
L TW W (11)

In this approach, performance negotiation between computing time for inverse of L

and gains by using TRSM should be taken into account.

TABLE 3. Performance results of eigenvalue problem (32 CPUs)

 Case 1 Case 2 Case 3
Difference

(Case 1 ③ -
Case 3 ③)

Hex8 1260 x 1260 x 1
(10M DOF)

10 eigenvalues (9 loop)

① 239.119 sec
② 266.858 sec
③ 517.371 sec

① 227.354 sec
② 267.217 sec
③ 505.865 sec

① 239.676 sec
② 225.588 sec
③ 476.549 sec

- 40.822 sec
(↓ 7.89%)

Hex8 1260 x 1260 x 1
(10M DOF)

50 eigenvalues (22 loop)

① 239.066 sec
② 648.929 sec
③ 899.302 sec

① 225.603 sec
② 642.754 sec
③ 879.649 sec

① 237.000 sec
② 521.791 sec
③ 770.086 sec

- 129.217 sec
(↓ 14.4%)

TABLE 4. Performance results of eigenvalue problem (64 CPUs)

 Case 1 Case 2 Case 3
Difference

(Case 1 ③ -
Case 3 ③)

Hex8 2000 x 2000 x 1
(24M DOF)

10 eigenvalues (9 loop)

① 484.178 sec
② 797.078 sec
③ 1296.588 sec

① 424.165 sec
② 791.127 sec
③ 1230.586 sec

① 483.794 sec
② 694.068 sec
③ 1193.168 sec

- 103.420 sec
(↓ 7.98%)

Hex8 1260 x 1260 x 1
(10M DOF)

100 eigenvalues (36 loop)

① 143.696 sec
② 1170.720 sec
③ 1320.015 sec

① 135.516 sec
② 1166.260 sec
③ 1307.391 sec

① 152.044 sec
② 909.117 sec
③ 1066.752 sec

- 253.263 sec
(↓ 19.2%)

Hex8 1260 x 1260 x 1
(10M DOF)

500 eigenvalues (134 loop)

① 147.117 sec
② 4378.680 sec
③ 4531.387 sec

① 139.744 sec
② 4374.520 sec
③ 4519.864 sec

① 144.483 sec
② 3032.570 sec
③ 3182.611 sec

- 1348.776 sec
(↓ 29.8%)

Hex8 1260 x 1260 x 1
(10M DOF)

1000 eigenvalues (251 loop)

① 143.202 sec
② 8414.730 sec
③ 8563.521 sec

① 136.644 sec
② 8408.190 sec
③ 8550.448 sec

① 143.147 sec
② 6215.300 sec
③ 6364.019 sec

- 2199.502 sec
(↓ 25.7 %)

The eigenvalue analysis of simple finite element models was performed considering the

three performance enhancement issues. Table 3 and 4 list the performance results in 32 and
64 CPUs parallel computing environment. Case 1 is for normal elimination-substitution
algorithm with optimized network topology, Case 2 is for a condensation based on Case 1
and Case 3 is for partial inverting algorithm with LCM concept based on case 2. Then, ①
lists the Cholesky factorization time, ② lists Triangular solution time and ③ lists MFS

 Wanil BYUN and Seung Jo KIM

20

elapsed time. The results of the Cholesky factorization time show performance
enhancement compares with Case 1 and Case 2. And the Cholesky factorization time is
similar between Case 1 and Case 3 because of condensation in spite of adding inverting
routine TRTRI. In a view point of triangular system solving time, Case 3 has a good
performance enhancement if the iteration loop is more and more.

4. CONCLUSION

Parallel performance tuning of the multifrontal algorithm in block Lanczos method was
conducted from three points of views in this research. Using condensation to reduce
communication volume results in better performance during Cholesky factorization phase.
In a viewpoint of topology, a network topology optimization also needs to have a better
performance. The best topology set is dependent on network structure and device type. In
this research, about 8~12% enhancement can be obtained by topology control and
condensation in case of parallel computing environment (64 CPUs). At last, the
factorization time increases when applying the LCM concept because inverse subroutine
(TRTRI) is added. However, if the number of Lanczos iteration is large, a partial inverting
algorithm is more efficient and shows good performance. About 8~25% enhancement in
this research can be obtained by using LCM concept due to the data-independent
communication. Applying the LCM concept inside an iteration loop shows that it is
significant for reducing the computing time in parallel matrix operations.

ACKNOWLEDGMENTS

This research has been partially supported by the ‘Rapid Design of Satellite
Structures by Multi-disciplinary Design Optimization’ project from Aerospace
Research Institute(KARI) and NRL program administered via the Institute of
Advanced Aerospace Technology at Seoul National University.

REFERENCES

[1] D. Calvetti, L. Reichel and D. Sorensen, “An Implicit Restarted Lanczos Method for Large Symmetric
Eigenvalue Problems,” Electronic Transaction on Numerical Analysis, Vol. 2, pp. 1-21, 1994

[2] K. Wu and H. Simon, “An Evaluation of the Parallel Shift-and-Invert Lanczos Method,” Proceedings of
International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 2913-
2919, Las Vegas USA, June 1999

[3] R. Morgan and D. Scott, “Preconditioning the Lanczos Algorithm for Sparse Symmetric Eigenvalue
Problems,” SIAM Journal on Scientific Computing, Vol. 14, pp. 585-593, 1993

[4] Y.T. Feng and D.R.J. Owen, “Conjugate Gradient Methods for Solving the Smallest Eigenpair of Large
Symmetric Eigenvalue Problems,” International Journal for Numerical Methods in Engineering, Vol. 39,
pp. 2209-2229, 1996

[5] http://www.netlib.org/blas
[6] http://www.netlib.org/lapack
[7] Choi, J., “A Fast Scalable Universal Matrix Multiplication Algorithm on Distributed-Memory Concurrent

Computers”, Proceedings of the IPPS, pp. 310-314, 1997

