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Abstracts Worst—case state estimation will be proposed in this paper. By using the worst—case disturbance and
worst—case state estimation, we can obtain right/left constrained coprime factors. If constrained coprime factors are used
in designing a controller, the infinity—norm of closed-loop transfer matrix can be smaller than any constant (> 7opt)
without matrix dilation optimization. The derivation of left/right constrained coprime factors is achieved by doubly
coprime factorization for the plant constrained by the infinity norm. And the parameterization of stabilizing controllers

gives us easily understanding for He, control theory.
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1. INTRODUCTION

Doubly coprime factorization for linear time invariant sys-
tems is used to parameterize all stabilizing controllers. The
parameterization of stabilizing controllers was first intro-
duced by Youla et al[5]. Especially, the Youla parameter-
ization provides a systematic way to choose the (optimal)
stabilizing controllers[2]. The conventional Youla parame-
terization gives the structure of Hz controller and free Youla
Q@ parameter. In conventional Youla parameterization ap-
proach to Hoo control, the @ design to minimizing co-norm
of the closed-loop transfer matrix should be achieved by
matrix dilation optimization.

2. PROBLEM STATEMENT

Youla parameterization for original plant gives the standard
‘H2 controller structure and free parameter @. In conven-
tional Youla parameterization approach to He control, the
parameter @ has been designed by using matrix dilation
optimization according to the infinity norm constraint for
closed-loop transfer matrix. In this case, since the state di-
mension of Q is 2n, the apparent dimension of controller is
3n, finally, tedious manipulations will produce cancelations
resulting in the n dimensional controller{4].

To overcome these problems, firstly, we define the worst-
case state estimation, secondary, we suggest constrained
right/left coprime factors which can give a controller which
can satisfy the infinity norm constraint for the closed-loop
transfer matrix.

3. UNCONSTRAINED/CONSTRAINED
COPRIME FACTORS

For a original plant G(s) = C2(sI — A)"'Ba + Dy2, the
generalized plant can be expressed by

(E(t) = A:l:(t) -+ B]'w(t) + Bz’u(t)
z(t) = Ciz(t) + Dnw() + Drult) (1)
y(t) = Cox(t) + Daw(t) + Dau(t)

where x(t) is state vector ,u(t) is control input vector, z(t)
is controlled output vector, y(t) is output vector and w(t)
is the disturbance which is caused by unmodeled dynamics,
modeling error and etc. We may omit time ¢ for any vectors.
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Assume that the following properties are satisfied for a
given system of Eq.(1) to describe controller as simple as
possible:

1. (A, By, C)) is stabilizable and detectable.
2. (A, B,,C>) is stabilizable and detectable.
3. DI,[Cy Do) =1[0 1)

oo Pn=1]

5. Du =0 and D22 =0.

-

where O is zero matrix of suitable dimension. If the above
five assumptions are not satisfied for the generalized plant,
the loop transformation and loop scaling[l] may be needed
case by case to satisfy these assumptions. We utilize fol-
lowing equations for generalized plant satisfying the above
assumptions without derivation and proof because these can
be found in some references|1, 4, 6]:

A v *B.BT - B,B,T
Xs = Ri iy 2
ZC[ _C’IT‘CI —AT ( )
AT y2eTe, - c,’cC,
Yo = Ri = 3
= ZC[ _B.BT A 3)
B, Bi(I - D], D»)
¢, = (I-DbD.D%Hc,
Fe = -BlX.
H., = -YC?T
Zoo = T=7""YuXo)"

where Xoo > 0Y oo >0, p(X oY o) < 47, and the Riccati
solutions X and Y. exist(that is, Hamiltonian matri-
ces have no imaginary eigenvalues). The solution of Riccati
equation is a real, symmetric and semi-positive definite ma-
trix. When v — o0, we define X» = X .Y, = Y
and matrix Z. is equal to identity one. Also, we define
F;:= -BIX,and H;:= ~Y,CT.

‘We can also obtain well-known results for doubly coprime
factorization technique and conventional Youla parameteri-
zation of stabilizing controllers in some reference(l, 6]. Let’s
the subscript “ur” represent “unconstrained right coprime
factor” and “ul” “unconstrained left coprime factor”.

Remark 1 For a given original plant:

A | B

G(s) = [ o ]:CZ(SI—A)”BQ. (4)



The doubly coprime factorization is given by
Yur Xur Mur _Xul . I 0 (5)
_Nul Mul Nur Yul - 0 I

with each transfer functions in RHs, and where

A+ H,C, IBQ -H,

R I v i e IO
w | —C (I §
and
M. -Xu. [ A+ By F, | B, —-H,
N y = F; I 0 . (7
ur ul i 02 0 I

These are elementary results for doubly coprime factoriza-
tion.

Above results can be independently derived from internal
stability theory. Also, coprime factors are normalized such
as [{Nw Mu]llec = 1 for all fregencies.

The closed-loop transfer matrix can be expressed by

F(P,K) = Pu+Ppo(M.,Q—-X,u)M, P
= (Pn — P2 XMy Pa)
+(P12Mur)Q(Mu1P21)
= Tin+T12QT2 (8)
in which
T T2 | _
T 0 -
A+ ByF, —-H-,C, —H:;D» B,
0 A+ H;C,; | B+ H:Doy, 0
C,+ D, F; C 0 D>
0 C, Dy 0

Youla parameterization approach to Ho control is mini-
mizing oo-norm of Eq.(8). This replaces the design problem
selecting a stabilizing controller with that of selecting a suit-
able @ such that

iIn{fH]:z(P, K|l = iaf 1T + T1:2QT21]|0 < 7. (9)

Matrix dilation optimization should be used to satisfy the
infinity norm constraint of closed-loop transfer matrix, in
other words, Youla Q,,, parameter should be designed ac-
cording to the infinity norm constraint. Since state dimen-
sion of @, is 2n, dimension of controller becomes 3n. How-
ever, tedious manipulations bring about cancelations result-
ing in the n—dimensional controller.

3.1.  Plant Constrained by the Infinity Norm

Definition 1 Consider the systemm of Eq.(1) satisfying
above five assumptions. Inequality constraint defined for any
positive constant v > Yopt 48

2117 < ¥°llwli3 (10)

is said to be infinity norm constraint, and the plant
induced from infinity norm constraint is said to be
the plant constrained by the infinity norm.

This definition is very meaningful in view of the disturbance
attenuation, and it gives us to the inequality constraint for
oc—norm of closed-loop transfer matrix as shown in Fig.1,
namely, ||F; (P, K)l|x < 7, where P is generalized plant
and K is controller.

Fig. 1 Infinity-norm constraint

Proposition 1 Consider a linear system of Eq.(1) for
which assumptions 1-5 hold. Suppose the matriz X o of
Eq.(2) exists, then the closed loop dynamics is expressed by

. 1
&= (A+ ?BIBITXDO - B:BI X))z (11)

and the matric A + -y B1B{ Xoo — B2B] X oo has all its
eigenvalues in the open left half of the complez plane. The
worst case disturbance input 1s

w=+Bf X .z (12)

and the optimal control input is

w=F,r= —BgXOQ:l:, (13)

The closed-loop dynamics of Eq.(11) is the dynamics con-
strained by the infinity norm constraint of Eq.(10).

If the solution of Riccati equation X, exists, then the
closed-loop dynamics of Eq.(11) is asymptotically stable
since the riccati operator of Eq.(2) gives the stable invari-
ant subspace by properties of riccati operator. If we assume
that the symmetric and semi-positive definite matrix X o
exists, we can differentiate Lyapunov candidate of a:TXgo:r:

%(:;;Txmz)

= —|zl3 + 7% |lwll3
+lu + B Xoozll} — 72llw — 77> B] X o] ¥(14)

where the Riccati equation for X o is

ATX o+ X0 A
+CTCI +v*XB1BTX , — X..B;BY X, =0.

Assume that x(0) = z(co) = 0 and integrate Eq.(14) from
t =0 to t = oo, then we obtain:

2113 =7 llwll3 = Jlu+ B3 X w3 =7’ |lw 7" B X o|f3.

(15)
Hence, the infinity norm constraint of Eq.(10) can be in-
terpreted as Eq.{(15). Note that w := v ?BT Xz is the
worst case disturbance input in the sense that it maximizes
the quantity ||z|)2 — v*||w||? in Definition 1 for the min-
imizing value of u = —BI X . x; that is the u making
u + Bg'Xgoz = 0 and w making w — 'y”"BlTXoom =90
are values satisfying a saddle point condition. Infinity norm
constraint gives the functional relations of Eq.(12) and (13)
between disturbance input, control input and state vector.
Then, the closed—loop dynamics for generalized plant Eq.(1)
is equal to Eq.(11) in Proposition 1.

Proposition 2 Consider the closed-loop dynamics of
Eq.(11) in Proposition 1. Suppose the X s,Y o and Z



ezist. Then the plant constrained by the infinity norm con-
straint of Eq.(10) in Definition 1 is ezpressed by

P, =

ALJ,BlBlTXm + -;Zzooywxoomngw | Z.B;
C. 0

(16)

where P denotes the plant constrained by the infinity norm.
The effect on system matriz caused by worst—case distur-
bance input s
1 T
?Bl Bi X amn
and the effect on system matriz caused by worst-case state
estimation 1s
1 T
—Z0YwXB2Bs Xoo. (18)
v
The plant constrained by the infinity norm considers the
effect which can be caused by worst-case disturbance and
worst-case state estimation.

In the problem of full state feedback, since the measure of
state vector is available, Yo = 0 and Z.. = I. How-
ever, without loss of generality, the plant constrained by
the infinity norm can be suggested from a simple algebraic
calculation for Eq.(11):

z (A+7Bi1BT X — ZoZZ'B2BY X )z
+Z Bou
(19)

where Z . is real symmetric positive definite matrix.

However, in the problem of output feedback, can we say
the plant constrained by the infinity norm is expressed like
Eq.(16)7 The answer is “positive”. That is the reason why
there is no interference on the stability between observer and
system dynamics by the separation principle. Therefore,
let’s the stability for the state error dynamics investigate.
Firstly, if (C32, A) is detectable, the observer for generalized
plant of Eq.(1) can be given by

T = A&+ Bi1w + Bou+ ZooHoo(Cat — y)

w=v*Bf X%

(20)

u=Fo& and

where Z o, H » is any matrix such that A+vy ?B1BT X . +
Z . H , is stable. Above observer is the typical Luenberger
observer|[6], and the observer of Eq.(20) is also that of He
central controller. Define the state error vectorase =z —&
and consider the state error dynamics to investigate the sta-
bility of state error dynamics which is obtained by subtract-
ing Eq.(20)} from Eq.(1):

e=(A+7 BBl Xeo + Zoo HooCs)e. (21)

1’)’2€TZ_1€

Let’s differentiate the Lyapunov candidate of 3

for the state error dynamics

%'YQETZ_IE)

VIBTZ  e|l} + 7*||Czell3 + | B X celf3) <0
(22)

d
i

1
Tz

where the Riccati equation for Z is

ZA+7 B1iBT X))+ (A+~+*B1BY X )2
+B\BT - 2CTC,Z +v 2 ZX oB:BY X . Z =0,

(23)
Since the stabilizability of (A, B;) and detectabil-
ity of (A,C;) ensure that hm;—_.e(tf) = 0 when

}

(A+77°B1B Xoo + 77 °Z Y o X0 B2BE X oo )

58

1v*(eTZ 'e) = 0, therefore, the state error dynamics
Eq.(21) is asymptotically stable.

The Riccati equation of Eq.(23) is obtained by the simi-
larity transformation of Hamiltonian matrix associated with
Y « of Eq.(3). Introducing the transformation matrix

T:[ I _7-2X00 ])

(4] I
the stable invariant subspace of Riccati equation for Z is

given by
I
7[ v ]

The stable solution of Riccati equation of Eq.(23) is
Yooll — 7 2X00Y o) !. We can know that Z = Yoo (I—
7_2XOOYOO)_1 =TI -7"2Y X)) 'Y =Z,Y  from
simple algebraic calculation. The stable error dynamics of
riccati Eq.(23) is expressed by

(A+7’B1BYX o + 7 2ZY X owB2Bl X o
+ZooHooC2)ey (26)

a4
dt
of

(24)

-2
I—vy mem}. (25)

Yoo

[

and this is error dynamics which can be stabilized by ob-
server and feedback gain. The worst—case state estimation
can be found from the difference between the real error dy-
namics of Eq.(21) and error dynamics which can be stabi-
lized like Eq.(26). Therefore, the worst—case state estima-
tion is ;}Q—ZOOYOQXOOBQBQTX&: that is the stabilizable
maximum perturbation for state error dynamics. As shown

Plant constrained by the Infinity Norm

Worst-case disturbance

Input Output

Worst-case state estimation

Fig. 2 Graphical interpretation of the plant constrained
by the infinity norm

in Fig.2, the system matrix of the plant constrained by the
infinity norm includes the bad—effect which can be caused by
worst—case disturbance(;lfBl BT X ) and worst—case state
estimation(%;ZOOYDOXOOBQB;XOC). With the mathe-
matical expression, the system matrix of plant constrained
by the infinity norm like Eq.(16) includes implicitly Riccati
solutions related with feedback and observer gain matrices
dependent upon . If v — oo, then we can obtain original
plant of Cy(sI — A)™'B; from the plant constrained by
infinity norm constraint of Eq.(16).

3.2.  Constrained Doubly Coprime Factorization

In this section, we show the doubly coprime factoriza-
tion for the plant constrained by the infinity norm. The
lower linear fractional transformation of a generalized plant
P on a controller K can be expressed as Fi{P, K), and
[lFi (P, K)|loo < v is equal to the infinity norm constraint
of Eq.(10). Let’s the subscript “r” represent “constrained
right coprime factor” and “I” “constrained left coprime fac-
tor”.



Theorem 1 Given a generalized plant satisfying five as-
sumptions

A| B B
P=|C | 0 D |, (27)
Cz D21 0

if Xoo,Yoo and Z ezist, then we can find the plant
constrained by infinity norm constraint of Eq.(16). Let’s
P,=N,M'= Ml_lNl be right and left coprime factor-
1zation of P, and let

x. ][ M,

Y. -X; | _| I o
[-—N, MlJ[NT Y, ]—[0 I] (28)
with each transfer matrices in R'Hoo, and where
/ir I 2335132 '_EZaJIIa:
[ R, ] - | =Fa T 1 0 (29)
! ! -C, 0 I
and
M. -X, A, | ZwB; —-Z.Heu
N Yy =| Fe I 0 (30)
T ! C: 0 I

where A, = A+§,BIB?Xm+7{rszwowQB§Xw+
ZwHCo and A; = A + ;‘gBlBlTXoo + By F.

If Xoo,Yo and Zo exist, the left and right coprime fac-
tors constrained by the infinity norm can be found in any
cases. These coprime factors of Eq.(29) and Eq.(30) are
useful in that it can parameterize all stabilizing controllers
which is constrained by the infinity norm, and easily make
the sensitivity and closed-loop transfer matrix.

4. NUMERICAL EXAMPLE

Our example is to find controller K which can satisfy
IFi(P, K)||oo < <. Assume the generalized plant is given
by

G I| G
P=]o0 oI (31)
G I|G
and if G(s) = C(sI —~ A)"'B, then
A |[B 0] B
C 0 I 0
el Gl lo o] 2] o
C [0 I] 0

Since the generalized plant(P) does not satisfy five all
assumptions, we must use the loop transformation and
scaling(S7' = I and S;' = /1 — 52I)).[1] Then, we can
find the generalized plant satisfving five all assumptions.
And the lowest achievable v, is expressed by

Yopt = V1 + p(X:Y32).

The plant constrained by infinity norm for the generalized
plant satisfying five all assumptions is described as

(33)

A+ 3(I+Z5YxXx)BB ' Xo | ZooB
‘ 0

s = 1

(34)
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and left and right coprime factors of Theorem 1 for P, are

Y. X,]_
-N; M, |~
1 T
A, ' Z.B \/—l_ﬁzmywc (35)
BTX . I 0
e
mc 0 I
and
M, -X,] _
N, Y, |~
1 T
A, Z.B —:zzmywc (36)
-BTX . I 0
L_cC 0 I
1~7"2
where A, = A + H(I + ZoYooXoo)BBTX, —

i 57ZxYC'C and A, A—-(1-~+3HBBTX,.
The infinity norm of closed-loop transfer matrix can be
expressed as follows, by letting G = M'N,; and K =
ST'X,Y['S7'(Q = 0). The closed-loop transfer matrix

is expressed by

Y,
S;'X,
where U = MY, + 8;' N, X,.
Let G(s) = 8—5-1+—1, for the given plant, we know vop¢ = 1.8
by Eq.(33). For a ¥ > vopt, we can make constrained left
and right coprime factors constrained by the infinity norm
according to Eq.(35) and Eq.(36). If v = 1.9,

1Fi1 (P, K)||oo = 1.8924,

uﬁ(P,K)nm=“[ ) Jo] <-

(37)

o0

(38)
and if v = 1.81,
I7:(P, K) |l = 1.8099. (39)

As shown above, we can easily satisfy the infinity norm con-
straint by using constrained coprime factors.

5. CONCLUDING REMARKS

Constrained left/right coprime facotrs has been suggested
in which oco-norm of closed-loop transfer matrix can be
smaller than given constant vy without using optimization
such as matrix dilation one. If the worst-case disturbance
and worst-case state estimation are included in the origi-
nal plant, the plant constrained by the infinity norm can
be obtained. The closed-loop transfer matrix can easily be
obtained by using unconstrained/constrained coprime fac-
tors.
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