• Title/Summary/Keyword: Matrix Equations

Search Result 913, Processing Time 0.03 seconds

A Two-Step Screening Algorithm to Solve Linear Error Equations for Blind Identification of Block Codes Based on Binary Galois Field

  • Liu, Qian;Zhang, Hao;Yu, Peidong;Wang, Gang;Qiu, Zhaoyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3458-3481
    • /
    • 2021
  • Existing methods for blind identification of linear block codes without a candidate set are mainly built on the Gauss elimination process. However, the fault tolerance will fall short when the intercepted bit error rate (BER) is too high. To address this issue, we apply the reverse algebra approach and propose a novel "two-step-screening" algorithm by solving the linear error equations on the binary Galois field, or GF(2). In the first step, a recursive matrix partition is implemented to solve the system linear error equations where the coefficient matrix is constructed by the full codewords which come from the intercepted noisy bitstream. This process is repeated to derive all those possible parity-checks. In the second step, a check matrix constructed by the intercepted codewords is applied to find the correct parity-checks out of all possible parity-checks solutions. This novel "two-step-screening" algorithm can be used in different codes like Hamming codes, BCH codes, LDPC codes, and quasi-cyclic LDPC codes. The simulation results have shown that it can highly improve the fault tolerance ability compared to the existing Gauss elimination process-based algorithms.

GEGENBAUER WAVELETS OPERATIONAL MATRIX METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • UR REHMAN, MUJEEB;SAEED, UMER
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1069-1096
    • /
    • 2015
  • In this article we introduce a numerical method, named Gegenbauer wavelets method, which is derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value problems. The operational matrices are derived and utilized to reduce the linear fractional differential equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer wavelets method. We also combine Gegenbauer wavelets operational matrix method with quasilinearization technique for solving fractional nonlinear differential equation. Quasilinearization technique is used to discretize the nonlinear fractional ordinary differential equation and then the Gegenbauer wavelet method is applied to discretized fractional ordinary differential equations. In each iteration of quasilinearization technique, solution is updated by the Gegenbauer wavelet method. Numerical examples are provided to illustrate the efficiency and accuracy of the methods.

Topological Modeling Approach of Multibody System Dynamics for Lifting Simulation of Floating Crane (다물체계 동역학의 위상 관계 모델링 기법을 적용한 해상 크레인의 리프팅 시뮬레이션)

  • Ham, Seung-Ho;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.261-270
    • /
    • 2009
  • We can save a lot of efforts and time to perform various kinds of multibody system dynamics simulations if the equations of motion of the multibody system can be formulated automatically. In general, the equations of motion are formulated based on Newton's $2^{nd}$law. And they can be transformed into the equations composed of independent variables by using velocity transformation matrix. In this paper the velocity transformation matrix is derived based on a topological modeling approach which considers the topology and the joint property of the multibody system. This approach is, then, used to formulate the equations of motion automatically and to implement a multibody system dynamics simulation program. To verify the the efficiency and convenience of the program, it is applied to the lifting simulation of a floating crane.

An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix (전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석)

  • 남문희;하대환;이관희;장홍득
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 1997
  • Even though there are many analysis methods of circular tanks on elastic foundation, the finite element method is widely used for that purpose. But the finite element method requires a number of memory spaces, computation time to solve large stiffness equations. In this study many the simplified methods(Analogy of Beam on Elastic Foundation, Foundation Stiffness Matrix, Finite Element Method and Transfer Matrix Method) are applied to analyze a circular tank on elastic foundation. By the given analysis methods, BEF analogy and foundation matrix method, the circular tank was transformed into the skeletonized frame structure. The frame structure was divided into several finite elements. The stiffness matrix of a finite element is related with the transfer matrix of the element. Thus, the transfer matrix of each finite element utilized the transfer matrix method to simplify the analysis of the tank. There were no significant difference in the results of two methods, the finite element method and the transfer matrix method. The transfer method applied to a circular tank on elastic foundation resulted in four simultaneous equations to solve completely.

  • PDF

Stability Analysis of Induction Motor Rotor by Unbalanced Electromagnetic Forces (불평형 전자기력에 의한 유도전동기 회전자의 안정성해석)

  • 양보석;손병구
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1086-1092
    • /
    • 1998
  • This paper presents a general analytical method for analyzing the instability of unbalanced electromagnetic forces produced in induction motors with an eccentric rotor. The equations to be solved are a set of second order differential equations which give matrices with periodic coefficients that are a function of time due to the unbalanced electromagnetic force. The method is based on an extension of the Floquet theory. A transfer matrix over one period of the motion is obtained. and the stability of the system can be determined with the eigenvalues of the matrix. The analysis results of instability zone were coincided upon comparing that of transfer matrix method with that of rotating frame. Two examples are given. including an industrial application. The results show that the method proposed is satisfactory.

  • PDF

DETERMINANTAL EXPRESSION OF THE GENERAL SOLUTION TO A RESTRICTED SYSTEM OF QUATERNION MATRIX EQUATIONS WITH APPLICATIONS

  • Song, Guang-Jing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1285-1301
    • /
    • 2018
  • In this paper, we mainly consider the determinantal representations of the unique solution and the general solution to the restricted system of quaternion matrix equations $$\{{A_1X=C_1\\XB_2=C_2,}\;{{\mathcal{R}}_r(X){\subseteq}T_1,\;{\mathcal{N}}_r(X){\supseteq}S_1$$, respectively. As an application, we show the determinantal representations of the general solution to the restricted quaternion matrix equation $$AX+Y B=E,\;{\mathcal{R}}_r(X){\subseteq}T_1,\;{\mathcal{N}}_(X){\supseteq}S_1,\;{\mathcal{R}}_l(Y){\subseteq}T_2,\;{\mathcal{N}}_l (Y){\supseteq}S_2$$. The findings of this paper extend some known results in the literature.

Optimal Control of Nonlinear Systems Using The New Integral Operational Matrix of Block Pulse Functions (새로운 블럭펄스 적분연산행렬을 이용한 비선형계 최적제어)

  • Cho Young-ho;Shim Jae-sun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.198-204
    • /
    • 2003
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on two steps. The first step transforms nonlinear optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPBCP(two point boundary condition problem) is solved by algebraic equations instead of differential equations using the new integral operational matrix of BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems and is less error value than that by the conventional matrix. In computer simulation, the algorithm was verified through the optimal control design of synchronous machine connected to an infinite bus.

Dynamic stiffness matrix of composite box beams

  • Kim, Nam-Il
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.473-497
    • /
    • 2009
  • For the spatially coupled free vibration analysis of composite box beams resting on elastic foundation under the axial force, the exact solutions are presented by using the power series method based on the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the finite element model based on the classical Hermitian interpolation polynomial is presented. To show the performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are presented and compared with the finite element solutions using the Hermitian beam elements and the results from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation, and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically. Also the emphasis is given in showing the phenomenon of vibration mode change.

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM

  • Lee, Geunseop
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.613-626
    • /
    • 2017
  • For the overdetermined linear system, when both the data matrix and the observed data are contaminated by noise, Total Least Squares method is an appropriate approach. Since an ill-conditioned data matrix with noise causes a large perturbation in the solution, some kind of regularization technique is required to filter out such noise. In this paper, we consider a Dual regularized Total Least Squares problem. Unlike the Tikhonov regularization which constrains the size of the solution, a Dual regularized Total Least Squares problem considers two constraints; one constrains the size of the error in the data matrix, the other constrains the size of the error in the observed data. Our method derives two nonlinear equations to construct the iterative method. However, since the Jacobian matrix of two nonlinear equations is not guaranteed to be nonsingular, we adopt a trust-region based iteration method to obtain the solution.

LOCAL CONVERGENCE OF FUNCTIONAL ITERATIONS FOR SOLVING A QUADRATIC MATRIX EQUATION

  • Kim, Hyun-Min;Kim, Young-Jin;Seo, Jong-Hyeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.199-214
    • /
    • 2017
  • We consider fixed-point iterations constructed by simple transforming from a quadratic matrix equation to equivalent fixed-point equations and assume that the iterations are well-defined at some solutions. In that case, we suggest real valued functions. These functions provide radii at the solution, which guarantee the local convergence and the uniqueness of the solutions. Moreover, these radii obtained by simple calculations of some constants. We get the constants by arbitrary matrix norm for coefficient matrices and solution. In numerical experiments, the examples show that the functions give suitable boundaries which guarantee the local convergence and the uniqueness of the solutions for the given equations.