• Title/Summary/Keyword: Matrix Equations

Search Result 913, Processing Time 0.03 seconds

A Study on Vision Sensor-based Measurement of Die Location for Its Remodeling (금형 개조 용접시 시각 센서를 이용한 대상물 위치 파악에 관한 연구)

  • Kim, Jitae;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.141-146
    • /
    • 2000
  • We introduce the algorithms of 3-D position estimation using a laser sensor for automatic die remodeling. First, a vision sensor based on the optical triangulation was used to collect the range data of die surface. Second, line vector equations were constructed by the measured range data, and an analytic algorithm was proposed for recognizing the die location with these vector equations. This algorithm could make the transformation matrix without any specific corresponding points. To ascertain this algorithm, folded SUS plate was measured by the laser vision sensor attached to a 3-axis cartesian manipulator and the transformation matrix was calculated.

  • PDF

A simplified matrix stiffness method for analysis of composite and prestressed beams

  • Deretic-Stojanovic, Biljana;Kostic, Svetlana M.
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The paper presents the simplified matrix stiffness method for analysis of composite and prestressed beams. The method is based on the previously developed "exact" analysis method that uses the mathematical theory of linear integral operators to derive all relations without any mathematical simplifications besides inevitable idealizations related to the material rheological properties. However, the method is limited since the closed-form solution can be found only for specific forms of the concrete creep function. In this paper, the authors proposed the simplified analysis method by introducing the assumption that the unknown deformations change linearly with the concrete creep function. Adopting this assumption, the nonhomogeneous integral system of equations of the "exact" method simplifies to the system of algebraic equations that can be easily solved. Therefore, the proposed method is more suitable for practical applications. Its high level of accuracy in comparison to the "exact" method is preserved, which is illustrated on the numerical example. Also, it is more accurate than the well-known EM method.

Stability of Switched Linear Systems Using Upper Bounds of Solutions of Lyapunov Matrix Equations (리야프노프 행렬 방정식의 해를 이용한 스위칭 선형시스템의 안정화)

  • Yeom, Dang-Hae;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.20-22
    • /
    • 2005
  • In this paper, we propose a novel stability criterion for switched linear systems. The proposed method employs the results on the upper bound of the solution of LME(Lyapunov Matrix Equation) and on the stability of hybrid system. The former guarantees the existence of Lyapunov-like energy functions and the latter shows that the stability of switched linear systems by using these energy functions. The proposed criterion releases the restriction on the stability of switched linear systems comparing with the existing methods and provides us with easy implementation way for pole assignment.

  • PDF

A PRECONDITIONER FOR THE NORMAL EQUATIONS

  • Salkuyeh, Davod Khojasteh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.687-696
    • /
    • 2010
  • In this paper, an algorithm for computing the sparse approximate inverse factor of matrix $A^{T}\;A$, where A is an $m\;{\times}\;n$ matrix with $m\;{\geq}\;n$ and rank(A) = n, is proposed. The computation of the inverse factor are done without computing the matrix $A^{T}\;A$. The computed sparse approximate inverse factor is applied as a preconditioner for solving normal equations in conjunction with the CGNR algorithm. Some numerical experiments on test matrices are presented to show the efficiency of the method. A comparison with some available methods is also included.

Exact Static Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Elastic Beams (전단변형을 고려한 비대칭 박벽보의 엄밀한 정적 요소강도행렬)

  • 김남일;곽태영;이준석;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.345-352
    • /
    • 2001
  • Derivation procedures of exact static element stiffness matrix of shear deformable thin-walled straight beams are rigorously presented for the spatial buckling analysis. An exact static element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The buckling loads are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Exact Dynamic Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Beams Subjected to Initial Forces (초기하중을 받는 전단변형을 고려한 비대칭 박벽보의 엄밀한 동적 요소강도행렬)

  • 윤희택;김동욱;김상훈;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.435-442
    • /
    • 2001
  • Derivation procedures of exact dynamic element stiffness matrix of shear deformable nonsymmetric thin-walled straight beams are rigorously presented for the spatial free vibration analysis. An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The natural frequencies are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Stability of LTI Systems with Unstructured Uncertainty Using Quadratic Disc Criterion

  • Yeom, Dong-Hae;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.124-131
    • /
    • 2012
  • This paper deals with robust stability of linear time-invariant (LTI) systems with unstructured uncertainties. A new relation between uncertainties and system poles perturbed by the uncertainties is derived from a graphical analysis. A stability criterion for LTI systems with uncertainties is proposed based on this result. The migration range of the poles in the proposed criterion is represented as the bound of uncertainties, the condition number of a system matrix, and the disc containing the poles of a given nominal system. Unlike the existing methods depending on the solutions of algebraic matrix equations, the proposed criterion provides a simpler way which does not involves algebraic matrix equations, and a more flexible root clustering approach by means of adjusting the center and the radius of the disc as well as the condition number.

A hierarchical approach to state estimation of time-varying linear systems via block pulse function (블럭펄스함수를 이용한 시스템 상태추정의 계층별접근에 관한 연구)

  • 안두수;안비오;임윤식;이재춘
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.399-406
    • /
    • 1996
  • This paper presents a method of hierarchical state estimation of the time-varying linear systems via Block-pulse function(BPF). When we estimate the state of the systems where noise is considered, it is very difficult to obtain the solutions because minimum error variance matrix having a form of matrix nonlinear differential equations is included in the filter gain calculation. Therefore, hierarchical approach is adapted to transpose matrix nonlinear differential equations to a sum of low order state space equation from and Block-pulse functions are used for solving each low order state space equation in the form of simple and recursive algebraic equation. We believe that presented methods are very attractive nd proper for state estimation of time-varying linear systems on account of its simplicity and computational convenience. (author). 13 refs., 10 figs.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams (비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도)

  • 김문영;윤희택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Exact Elastic Element Stiffness Matrix of Thin-Walled Curved Beam (박벽 곡선보의 엄밀한 탄성요소강도행렬)

  • 김남일;윤희택;이병주;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.385-392
    • /
    • 2002
  • Derivation procedures of exact elastic element stiffness matrix of thin-walled curved beams are rigorously presented for the static analysis. An exact elastic element stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The displacement and normal stress of the section are evaluated and compared with thin-walled straight and curved beam element or results of the analysis using shell elements for the thin-walled curved beam structure in order to demonstrate the validity of this study.

  • PDF