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A PRECONDITIONER FOR THE NORMAL EQUATIONS

DAVOD KHOJASTEH SALKUYEH

ABSTRACT. In this paper, an algorithm for computing the sparse approx-
imate inverse factor of matrix AT A, where A is an m X n matrix with
m > n and rank(A) = n, is proposed. The computation of the inverse
factor are done without computing the matrix AT A. The computed sparse
approximate inverse factor is applied as a preconditioner for solving nor-
mal equations in conjunction with the CGNR algorithm. Some numerical
experiments on test matrices are presented to show the efficiency of the
method. A comparison with some available methods is also included.
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1. Introduction
Consider the normal equations
AT Az = AT, (1)

where A is a rectangular sparse matrix of size m x n with m > n. Moreover
it is assumed that the matrix A is of full rank, i.e., rank(A) = n. System (1)
is known as the system of normal equations associated with the least-squares
problem
min [[b— Az[|2.

Hence the system (1) and the methods derived from it are often labeled with
“NR” (N for “Normal” and R for “Residual”). It can be easily verified that the
matrix C = AT A is a symmetric positive definite (SPD) matrix. Hence among
the iterative methods for solving Eq. (1) the conjugate gradient (CG) algorithm
is the method of choice and applying implicit CG algorithm to (1) results in
the CGNR (also known CGLS) algorithm [11]. Since the convergence of the

Received March 22, 2008. Revised October 18, 2009. Accepted January 28, 2010.
© 2010 Korean SIGCAM and KSCAM .

687



688 Davod Khojasteh Salkuyeh

CG algorithm depends of the spectrum of the coeflicient matrix, its convergence
behavior depends on

AMAT A) = {o®|o € 0(A)},
that is, on the squares of the singular values of A. In the particular case that the
matrix A is square, the convergence behavior of the CG algorithm is governed
by

ro(ATA) = (ra(4))?,

where k5(A) is the spectral condition number of A.. This relation shows that
the convergence can be very slow even for matrices A with moderate condition
numbers.

To accelerate the convergence rate of an iterative method, it usually involves a
second matrix that transforms the coefficient matrix into one with a more favor-
able spectrum. The transformation matrix is called a preconditioner. There are
several ways for computing a preconditioner for the systems of normal equations.
But the ideas behind most of them are the same and are based on incomplete
variants of the QR factorization. Let A = QR be the QR factorization of A
where @ is m X n with orthonormal columns, and R is n X n upper triangular
with positive diagonal entries [7]. In this case ATA = RTR is the Cholesky
factorization of the normal equations matrix AT A. Obviously we have

(ARTHYT(AR™Y) =1I,.

To obtain a preconditioner approximate factorization A ~ QR is made where
R is still upper triangular with positive diagonal entries, but the columns of Q
may no longer be mutually orthogonal in general. In this case the preconditioned
normal equations matrix would be as

(AR"YHT(AR™) ~ I,..

Note that there is no need for the Q factor in the iterative phase of the algorithm
and therefore it does not need to be saved. See [4] for more details about the
general purpose of the incomplete QR factorization.

Jennings and Ajiz in [9], considered the methods based on Givens rotations
and methods based on the Gram-Schmidt precess for computing an incomplete
QR factorization of A. For preserving sparsity in R a drop tolerance is used:
fill elements are dropped if they are small according to some criterion. The
possibility of the breakdowns is also discussed.

Another way for computing a preconditioner for the normal equations is to
compute an incomplete Cholesky factorization of the normal equations matrix
C = AT A. In this method an incomplete Cholesky factor of C is obtained explic-
itly. As noted in [6], there is actually no need to form all of C explicitly; rather,
its rows can be computed.on at a time, used to perform the corresponding step of
the incomplete Cholesky algorithm, and then discarded. As we know, the stan-
dard incomplete Cholesky factorization may fail for SPD matrices. Nevertheless,
there exist reliable incomplete factorization algorithms that can be applied to a
general SPD matrices without breakdowns (see for example [5, 12]).
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Benzi and Tuma in [4] propose another method based on C-orthogonalization,
i.e., orthogonalization with respect to inner product

(Z,y)c = zTCy, Vz,yecR"

In this method no entry of C = AT A needs to be explicitly computed, algo-
rithm works entirely with A, the incomplete factorization process cannot break
down and intermediate storage requirements are negligible. Numerical results
presented in [4] show that the proposed preconditioner significantly reduces the
solution time and iterations compared to the unpreconditioned iteration.

Let C = RTR be the Cholesky factorization of matrix C where R is an
upper triangular matrix with positive entries on main diagonal. Let U be a
sparse approximation of R™1, i.e., U ~ R™}. The matrix U is called a sparse
approximate inverse factor for C. In this case we have

(AT (AU)z = UT AT AU =~ I,.
Now, the preconditioned normal equations can be written as
(AUYT(AU) = UT A", (2)

and the CGNR algorithm can be used computing its solution. Eq. (2) , will
have the same solution as system (1), but may be easier to solve.

In this paper, an iterative method based on a projection technique for solving
SPD linear systems of equations, which can be considered as a modification of
the Gauss-Seidel method in conjunction with the AIB algorithm (approximate
inverse via a bordering technique) [11] is used for computing a sparse approxi-
mate inverse factor of C = AT A.

Throughout this paper, we use the following notations:

® ¢, 1 ¢ the kth column of the identity matrix of order n;

o B, =le1,e2,...,er], where e; is the ith column of the identity matrix
of order n;

A(:,1: k) : the m x k submatrix of A containing of its first £ columns;
A(:, k) : the kth column of A;

Ay, : the kth leading principal submatrix of A;

(.,.) : the standard inner product in R".

This paper is organized as follows. In section 2, an algorithm for computing
a sparse approximate solution of an SPD linear system is presented. Section 3
is devoted to compute the sparse approximate inverse factor of C = AT A via
sparse-sparse iterations. Numerical experiments are given in section 4. Section
5 is devoted to some concluding remarks.

2. An iterative method for solving SPD linear systems of equations

In this section, we derive an approach for solving SPD linear systems of equa-
tions which is provided by a projection method. Consider the following linear
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system of equations
Bz = v, (3)

where B = (b;;) is an n x n SPD matrix and z,v € R™. Let £ and K be
two s-dimensional subspaces of R™ and z be an approximate solution of (3). A
projection technique onto the subspace K and orthogonal to £ is a process which
finds an approximate solution Z,e, to (3) by imposing the conditions that z,ey
belongs to z + K and that the new residual vector be orthogonal to L, i.e.,

Find zpew € *+ K, such that mhew :=v — Bzpew LL.

This framework is known as the Petrov-Galerkin conditions. Now, let £ = K =
span{e;}, where e; is the ith column of the identity matrix. Hence the new
approximate solution of (3) takes the form z,e, = z + d where § € K, i.e.,

Tnew = T + €y,
for some o € R . Now, we have
Tnew = VU — BZpew = 17 — aBey,

where the vector r denotes the initial residual vector » = v — Bx. Then the
Petrov-Galerkin condition 7,¢, L L yields
T
e T
& = = ‘.....’ 4

eerei bii ( )
where r; is the ith entry of r. The next theorem shows that how the appropriate
index ¢ is chosen. This theorem also establishes the convergence of the method

under some conditions.

Theorem 1. According to the above procedure, we have

.,,.2

ldll% — lldnewls = 3+ (5)
where dpew = B™ — Tpew, d = B~lv —z and ||z|lp = ||Bz|l2 = (Bz,2z)!/?

(B-norm of z) for any vector z € R™. Moreover, assume that i is selected at
each projection step such a way that

r? ’I"2'
—+ =max{-,j=1,2,...,n}. (6)
big bj;

Then the method converges for any initial guess.

Proof. It can be readily verified that dye, = d — cve; and Bd = r. Then
(Bdpew, Anew) = (Bd — aBe;,d — ae;)
= (Bd,d) — 2ar; + a’by;
= (Bd,d) - ar; from (4)
s
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This relation results in Eq. (5). To prove the second part of theorem we see
that Eq. (5) shows that the reduction in the square of the B-norm of the error
is equal to r?/b; > 0. Note that b; > 0, since B is SPD. Now, if r = 0, then
there is not anything to prove. Otherwise, by choosing index i via Eq. (6) we
have the maximum reduction in the square of the B-norm of the error. In fact,
in this case we have

”dnew”B < ”d”Bv

and this proves the convergence of the method. g

Note that an elementary Gauss-Seidel step is a collection of projection steps
with £ = K = span{e;} cycled for i = 1,2,...,n. Hence the proposed method
may be viewed an improvement of the Gauss-Seidel method.

In the next section we exploit the method described in this section for com-
puting the sparse approximate inverse factor of C = AT A.

3. Computing the sparse approximate factor of C = AT A
via sparse-sparse iterations

In this section, we combine the method described in the previous section with
the AIB algorithm [11] to derive an algorithm for computing a sparse approxi-
mate inverse factor of C = AT A. Let C}, be the kth leading principal submatrix
of C. C} is an SPD matrix and

Cr=E} CEp = EL ATAE, ; = (AEn )T (AEn ) = AG,1: k)TAG,1: k).
‘ (7)

As we see in continue it does not need to compute Cj explicitly. In the AIB
algorithm, the sequence of matrices

Clc+1=(cic Uk ),. k=1,2,...,n—1,

T
Vi Og+41

is made in which vy € R¥, ag11 € Rand C, = C. If the inverse factor Uy, is
available for C, i.e.,

UL CwU, = Dy,

then the inverse factor Uy, for Ci4q will be obtained by writing

UkT 0 Cr v Ug —z \ _ ([ Di 0
—zf 1 vl gy 0 1 o 0 py1 /)
in which

Ckzk = Vg, (8)

Skl = Qpy1 — 2 Uk 9)
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Relation (9) can be exploited if system (8) is solved exactly. Otherwise we should
use

She1 = Opy1— 28 Uk — 24 (V& — Crzy)
= Q41— Zg(’Uk +71), , (10)

where 7}, is the residual obtained in solving (8). Starting from k = 1, a procedure
for computing the inverse factor of C is obtained. Here, another problem is the
computation of v and this can be done via

vk = Ep Cenirr = EL v AT Aen i = (AE, 1) deniis = AG,1: k)TA( Kk +1).
(11)
The following theorem shows that dx.1 is always positive, independently of the
accuracy with which the system (8) is solved.

Theorem 2. The scalar 6;+1 computed by Eq. (10) is positive.

Proof. Let 11 be the residual of the approximate solution of (8), i.e.,
Tr = v — Crzx.
Hence, we have
2 = Ck_l(wg —Tk).
Now, by simple computations one can see that
Ok+1 = Qg1 — v;nglvk + 7’;‘:0;;17']6 =s+ Tgck_lﬁg,

where s = apy1 — vZCg Lok € R is the Schur complement of Cxy; and is a
positive real number (see Theorem 3.9 in [1]). On the other hand r{ C, Yri > 0,
since Cy, is an SPD matrix. Therefore, we conclude that dx.; is positive. O

This theorem shows that the AIB algorithm for computing an approximate
inverse factor of C = AT A can not break down independently of the accuracy
with which the system (8) is solved.

Computing sparse approximate solution for Crzy = vi,k = 1,2,...,n —1,
results in a sparse approximate inverse factor for C = AT A. Relation (7) shows
that system (8) is itself a system of normal equations (its coefficient matrix
is SPD) and therefore for computing a sparse approximate solution for it the
method described in the previous section can be exploited. Starting form a
zero vector as an initial guess for the solution of Cyz; = v and running [fil
iterations of the method results in a solution for this system with at most [fil
nonzero entries. Since in each step of the projection technique used for the
method only one entry of the current solution is modified and hence at most one
entry is added to the current solution. Note that in this case each column of the
inverse factor of C = AT A would have at most [ fil + 1 nonzero entries.

By the above discussion we now state the following algorithm, SAIF'-NR
(Lfil), for computing a sparse approximate inverse of A7 A is obtained.

1Sparse Approximate Inverse Factor
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Algorithm 1. SAIF-NR(lfil)

1. Set U; = [1] and &§; = [|A(:, 1)]|3
2. Fork=1,...,n—1 Do: (in parallel)
3. v = AG,1: k) TAG K+ 1)

4. zr ;=0 and r := v
5. For j =1,...,1fil and if ||r||.c > 7 Do:
6. Select the index ¢ via (6)
7. a=r1i/|AG D)3
8. zZi =z + «e;
9.  ri=r—aA(, 1 k)TA(, )
10. EndDo
11. Ok+1 = Qg1 — 2¢ (v +7)
12. Form Uj4+1 and Dy
13. EndDo.

14. D := D;% and U :=U,D

Some observations can be posed here. First of all it can be easily seen that
bii = ||A(:,7)]|3 and hence it is used in steps 1 and 7 of the algorithm. An
important note is that in step 3 of this algorithm only the entries over the main
diagonal entry of column k + 1 of C = AT A are computed and after computing
the kth column of U are discarded. Each column of U is computed independently
of other columns. Hence, the algorithm is suitable parallel computers. Finally,
this algorithm with'a little revision can be used for the normal equations

AAT Y = b, where z = ATu.

4. Numerical examples

All the numerical experiments presented in this section were computed in
double precision in Fortran PowerStation version 4.0 on a personal computer
Pentium 4, CPU 3.06 GHz, 1.00GB of RAM. For the first set of numerical exper-
iments we used four matrices (WELL1033, ILLC1033, WELL1850, ILL.C1850)
from the Matrix Market website [10]. These matrices with their generic proper-
ties are given in Table 1. For each matrix we report the number m of rows, the
number n of columns, and the number nnz of nonzeros. In the last two columns
we report iteration counts (under “CGNR”) and CPU times (under “Time”) for
CGNR without preconditioning. Here and in all the other numerical experiments

the stopping criterion used was
IAT (b — Azy)|l2 < 1078)| AT (b — Amo)|2.

In all cases we used the initial guess zop = 0, and the right-hand side b was
chosen so that the solution was z = (1,1,...,,1)7. .In all the table timings are
in second.
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Table 1: First set of test problems.
| matrix | m | n [ nnz | CGNR | Time |
WELL1033 | 1033 | 320 | 4732 164 0.16
ILLC1033 | 1033 | 320 | 4732 830 0.77
WELL1850 | 1850 | 712 | 8758 411 0.75
ILLC1850 | 1850 | 712 | 8758 | 1262 2.27

Table 2 : Test results for SAIF-NR, RIF, ICNE and IMGS for first
set of test matrices.

~ ] SAIF-NR 1 RIF 1 ICNE 1] IMGS ]
| matrix [7ifil | size | P-T [ Its [ I-T [ T-T | size | Tts || size | Its |[ size | Its |
WELL1033 S 930 0.031 97 0.031 0.662 911 72 866 108 797 147
6 1022 0.047 94 0.031 0.078
7 1120 0.054 92 0.031 0.4085
ILLC1033 4 811 0.016 160 0.063 0.679 825 256 818 286 807 3588
5 911 0.031 148 0.047 0.078 . 1848 838
] 1014 0.046 144 0.047 0.093 1982 484
WELL1850 4 2451 0.031 201 0.156 0.187 2835 89 2595 182 2526 194
3 2794 0.031 176 0.156 0.187 2849 150
] 3089 0.031 176 0.156 0.187
ILLC1850 5 2675 0.031 271 0.219 0.250 2904 248 2691 774 2608 1084
6 2951 0.031 258 0.219 0.250 7031 155
7 3208 0.031 250 0.218 0.249

Table 2 contains the results for the SAIF-NR(Ifil) for different values of [ fil
together with the results for RIF (Benzi and Tuma’s method), ICNE (incom-
plete Cholesky factorization preconditioner) and IMGS (incomplete QR precon-
ditioner based on the modified Gram-Schmidt) presented in [4]. In this table we
report the number of nonzeros in the incomplete factor or inverse factor (size),
the time to construct the preconditioner (PT), the number of preconditioned
CGNR iterations (Its), the time for the iterative solution phase (IT), and TT
(=PT+IT). Since the structure of our computer and the computer used for the
numerical results presented in [4] are different we only report SAIF-NR’s time.

As we see, for the ILLC1033, the results of SAIF-NR algorithm is better than
that of the RIF algorithm, but in general the converse is not correct. As we
know the C-orthogonalization process is in general sequential but the SAIF-NR
algorithm is inherently parallel. More investigation for the numerical experi-
ments presented in Table 2 shows that the results of the SAIF-NR algonthm are
often better than that of the ICNE and IMGS algorithms.

The second set of the numerical experiments are devoted to three large ma-
trices RAEFSKY3, VENKATO01 and STAT96V1. These matrices can be ex-
tracted from the University of Florida Sparse Matrix Collection [8]. Let 4; =
RAEFSKY3(:,1 : 5000), A, = VENKATO1(:,1 : 5000) and A3 = STAT96V1.
We use these matrices for our numerical tests. Some generic properties of Ay,
As and Aj are given in Table 3. A { means that convergence was not-attained
in 10000 iterations for CGNR. Notations in this table and the next one are as
before.
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Table 3 : Second set of test problems.

| matrix | m l n | nnz | CGNR | Time |
A 21200 | 5000 | 347968 T -
Ao 62424 | 5000 | 137568 T -
As 197472 | 5995 | 588798 786 77.719

Table 4 : Numerical results for the second set of test matrices.

| matrix [[Ifil | size | P-T [Its | I.-T | T-T |
A 8 |31665 | 10.341 | 70 | 0.859 | 11.200

9 | 33611 | 11.594 | 66 | 0.828 | 12.422

10 | 35333 | 12.828 | 65 | 0.828 | 13.656

Ao 8 |38657 | 3.359 | 60 | 0.625| 3.984

9 141539 | 3.797 | 58 | 0.609 | 4.406

10 | 44642 | 4.234 | 56 | 0.609 |  4.843

As 8 122217 2.656 | 185 | 5.515 | 8.171

9 22252 | 2.921 | 181 | 5.422 | 8.343

10 | 22257 | 3.250 | 177 | 5.234 | 8.484

In Table 4 numerical results of the preconditioned CGNR algorithm with
SAIF-NR preconditioner with different values of [fil are given. As we see the
proposed preconditioner is effective in reducing both the iteration count and the
total solution time. Numerical results presented in this table shows that the
parameter [ fil = 10 usually gives good results. '

5. Conclusion

We have proposed an algorithm for computing a sparse approximate inverse
factor of the coefficient matrix of the normal equations. The computed sparse
approximate inverse factor was used as a preconditioner for the normal equa-
tions. Numerical experiments show that the proposed preconditioner is robust
and free from break down. A comparison with some available methods such
as RIF, ICNE and IMGS methods was given. Numerical results show that the
new preconditioner is more effective than the ICNE and IMGS methods. But,
although in some cases our method gives better results than the RIF method
but in general is not competitive with RIF method. Nevertheless, the main ad-
vantage of our method over the RIF method is that it is suitable for parallel
computers.
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