• Title/Summary/Keyword: Mathematics concept

Search Result 1,539, Processing Time 0.031 seconds

A mathematics-educational investigation on the philosophy of science of Bachelard - focused on the Dialectical Developments of Science (Bachelard 과학철학의 수학교육학적 의미 탐색 - 변증법적 발달을 중심으로)

  • Joung, Youn Joon
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.237-252
    • /
    • 2013
  • The philosophy of science of Bachelard is introduced mainly with epistemological obstacles in the discussions within mathematics education. In his philosophy, epistemological obstacles are connected with the dialectical developments of science. Science progresses through generalization of concepts and theories by negating things which were recognized as obvious. These processes start with ruptures against the existing knowledge. Epistemological obstacles are failure in keeping distance with the existing knowledge when reorganization is needed. This concept means that there are the inherent difficulties in the processes of concept formation. Finally I compare the view of Bachelard on the developments of science and the 'interiorization-condensation-objectification' scheme of reflexive abstraction in mathematics education and discuss the inherent difficulties in the learning mathematics.

  • PDF

An analysis on mathematical concepts for proportional reasoning in the middle school mathematics curriculum (중학교 교육과정에서 비례적 사고가 필요한 수학 개념 분석)

  • Kwon, Oh-Nam;Park, Jung-Sook;Park, Jee-Hyun
    • The Mathematical Education
    • /
    • v.46 no.3
    • /
    • pp.315-329
    • /
    • 2007
  • The concepts of ratio, rate, and proportion are used in everyday life and are also applied to many disciplines such as mathematics and science. Proportional reasoning is known as one of the pivotal ideas in school mathematics because it links elementary ideas to deeper concepts of mathematics and science. However, previous research has shown that it is difficult for students to recognize the proportionality in contextualized situations. The purpose of this study is to understand how the mathematical concept in the middle school mathematics curriculum is connected with ratio, rate, and proportion and to investigate the characteristics of proportional reasoning through analyzing the concept including ratio, rate, and proportion on the middle school mathematics curriculum. This study also examines mathematical concepts (direct proportion, slope, and similarity) presented in a middle school textbook by exploring diverse interpretations among ratio, rate, and proportion and by comparing findings from literature on proportional reasoning. Our textbook analysis indicated that mechanical formal were emphasized in problems connected with ratio, rate, and proportion. Also, there were limited contextualizations of problems and tasks in the textbook so that it might not be enough to develop students' proportional reasoning.

  • PDF

A NEW CONTRACTION BY UTILIZING H-SIMULATION FUNCTIONS AND Ω-DISTANCE MAPPINGS IN THE FRAME OF COMPLETE G-METRIC SPACES

  • AHMED AL-ZGHOUL;TARIQ QAWASMEH;RAED HATAMLEH;ABEDALKAREEM ALHAZIMEH
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.749-759
    • /
    • 2024
  • In this manuscript, we formulate the notion of Ω(H, θ)-contraction on a self mapping f : W → W, this contraction based on the concept of Ω-distance mappings equipped on G-metric spaces together with the concept of H-simulation functions and the class of Θ-functions, we employ our new contraction to unify the existence and uniqueness of some new fixed point results. Moreover, we formulate a numerical example and a significant application to show the novelty of our results; our application is based on the significant idea that the solution of an equation in a certain condition is similar to the solution of a fixed point equation. We are utilizing this idea to prove that the equation, under certain conditions, not only has a solution as the Intermediate Value Theorem says but also that this solution is unique.

Some Remarks on the Sameness and the Meaning of the Equal Sign in Elementary School Mathematics Textbooks (초등학교 수학에서 같음과 등호의 의미에 대한 고찰)

  • Paek, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.23 no.1
    • /
    • pp.45-61
    • /
    • 2020
  • The concept of equality is given as a way of reading the equal sign without dealing it explicitly in elementary school mathematics. The meaning of the equal sign can be largely categorized as operational and relational views. However, most elementary school students understand the equal sign as an operational symbol for just writing the required answers. It is essential for them to understand a relational concept of the equal sign because algebraic thinking in middle school mathematics is based on students' understanding of a relational view of the equal sign. Recently, the relational meaning of the equal sign is emphasized in arithmetic. Hence it is necessary for elementary school students to have some activities so that they experience a relational meaning of the equal sign. In this study, we investigate the meaning of the equal sign and contexts of the equal sign in elementary school mathematics to discuss explicit ways to emphasize the concept of equality and relational views of the equal sign.

An Analysis of Teaching Areas of Triangles and Quadrilaterals in Elementary School Mathematics Textbooks (초등학교 수학 교과서에 나타난 삼각형과 사각형의 넓이 지도 방법에 대한 분석)

  • Kim, Shin-Young;Kang, Wan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.9 no.2
    • /
    • pp.161-180
    • /
    • 2005
  • The purpose of this study is to delve into how elementary mathematics textbooks deal with the areas of triangles and quadrilaterals from a viewpoint of the Didactic Transposition Theory. The following conclusion was derived about the teaching of the area concept: The area concept started to be taught perfectly in the 7th curricular textbook, and the focus of area teaching was placed on the area concept, since learners were gradually given opportunities to compare and measure areas. As to the area formulae of triangles and quadrilaterals, the following conclusions were made: First, the 1st curricular, the 2nd curricular and the 3rd curricular textbooks placed emphasis on transposition by textbooks, and the 4th curricular, the 5th curricular and the 6th curricular textbooks accentuated transposition by teachers. The 7th curricular textbooks put stress on knowledge construction by learners; Second, the focus of teaching shifted from a measurement of area to inducing learners to make area formula. Namely, the utilization of area formula itself was accentuated, while algorithm was emphasized in the past; Third, the way to encourage learners to produce area formula changed according to the curricula and in light of learners' level, but a wide range of teaching devices related to the area formulae were removed, which resulted in offering less learning chances to students; Fourth, what to teach about the areas of triangles and quadrilaterals was gradually polished up, and the 7th curricular textbooks removed one of the overlapped area formula of triangle.

  • PDF

A Study on Application of Concrete Object and Semi-Concrete Object in Elementary Geometry Learning (초등기하 학습에서의 구체물과 반구체물 활용에 대한 연구)

  • Yim, Youngbin;Hong, Jin-Kon
    • School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.441-455
    • /
    • 2016
  • The position as saying that the math learning needs to begin from what diversely presents concrete object or familiar situation is well known as a name dubbed CSA(Concrete-Semiconcrete-Abstract). Compared to this, a recent research by Kaminski, et al. asserts that learning an abstract concept first may be more effective in the aspect of knowledge transfer than learning a mathematical concept with concrete object of having various contexts. The purpose of this study was to analyze a class, which differently applied a guidance sequence of concrete object, semi-concrete object, and abstract concept in consideration of this conflicting perspective, and to confirm its educational implication. As a result of research, a class with the application of a concept starting from the concrete object showed what made it have positive attitude toward mathematics, but wasn't continued its effect, and didn't indicate significant difference even in achievement. Even a case of showing error was observed rather owing to the excessive concreteness that the concrete object has. This error wasn't found in a class that adopted a concept as semi-concrete object. This suggests that the semi-concrete object, which was thought a non-essential element, can be efficiently used in learning an abstract concept.

Regular Difference Covers

  • Arasu, K.T.;Bhandari, Ashwani K.;Ma, Siu-Lun;Sehgal, Surinder
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.137-152
    • /
    • 2005
  • We introduce the concept of what we call "regular difference covers" and prove many nonexistence results and provide some new constructions. Although the techniques employed mirror those used to investigate difference sets, the end results in this new setting are quite different.

  • PDF

FUZZY BE-ALGEBRAS

  • Ahn, Sun-Shin;Kim, Young-Hee;So, Keum-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.1049-1057
    • /
    • 2011
  • In this paper, we fuzzify the concept of BE-algebras, investigate some of their properties. We give a characterization of fuzzy BE-algebras, and discuss a characterization of fuzzy BE-algebras in terms of level subalgebras of fuzzy BE-algebras.

INSERTION-OF-FACTORS-PROPERTY WITH FACTORS NILPOTENTS

  • Han, Juncheol;Jung, Yui-Yun;Lee, Yang;Sung, Hyo Jin
    • Korean Journal of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.611-619
    • /
    • 2014
  • We in this note study a ring theoretic property which unifies Armendariz and IFP. We call this new concept INFP. We first show that idempotents and nilpotents are connected by the Abelian ring property. Next the structure of INFP rings is studied in relation to several sorts of algebraic systems.

THE ADJOINT OF SQUARE INTUITIONISTIC FUZZY MATRICES

  • Im, Young-Bin;Lee, Eun-Pyo;Park, Se-Won
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.401-412
    • /
    • 2003
  • Using the idea of "intuitionistic fuzzy set" [l, 2, 3], we defined the concept of intuitionistic fuzzy matrices as a natural generalization of fuzzy matrices. And we introduced and studied the determinant of square intuitionistic fuzzy matrices [4]. In this paper, we investigate the adjoint of square intuitionistic fuzzy matrices.