Browse > Article
http://dx.doi.org/10.11568/kjm.2014.22.4.611

INSERTION-OF-FACTORS-PROPERTY WITH FACTORS NILPOTENTS  

Han, Juncheol (Department of Mathematics Education Pusan National University)
Jung, Yui-Yun (Department of Mathematics Education Pusan National University)
Lee, Yang (Department of Mathematics Education Pusan National University)
Sung, Hyo Jin (Department of Mathematics Pusan National University)
Publication Information
Korean Journal of Mathematics / v.22, no.4, 2014 , pp. 611-619 More about this Journal
Abstract
We in this note study a ring theoretic property which unifies Armendariz and IFP. We call this new concept INFP. We first show that idempotents and nilpotents are connected by the Abelian ring property. Next the structure of INFP rings is studied in relation to several sorts of algebraic systems.
Keywords
INFP ring; nilpotent; idempotent; IFP ring; Abelian ring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), 3128-3140.   DOI   ScienceOn
2 E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.   DOI
3 H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368.   DOI
4 G.M. Bergman, Coproducts and some universal ring constructions, Tran. Amer. Math. Soc. 200 (1974), 33-88.   DOI
5 G.M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1-32.   DOI
6 K.R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979).
7 C. Huh, H.K. Kim, Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), 37-52.   DOI   ScienceOn
8 C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative ring, Comm. Algebra 30 (2002), 751-761.   DOI   ScienceOn
9 Y.C. Jeon, H.K. Kim, Y. Lee, J.S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), 135-146.   과학기술학회마을   DOI   ScienceOn
10 D.W. Jung, N.K. Kim, Y. Lee, S.P. Yang, Nil-Armendariz rings and upper nil-radicals, Internat. J. Math. Comput. 22 (2012), 1250059 (1-13).
11 N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488.   DOI   ScienceOn
12 N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207-223.   DOI   ScienceOn
13 G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), 2113-2123.   DOI   ScienceOn
14 L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
15 M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.
16 G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60.   DOI