J. Appl. Math. & Informatics Vol. **29**(2011), No. 3 - 4, pp. 1049 - 1057 Website: http://www.kcam.biz

FUZZY BE-ALGEBRAS[†]

SUN SHIN AHN, YOUNG HEE KIM* AND KEUM SOOK SO

ABSTRACT. In this paper, we fuzzify the concept of BE-algebras, investigate some of their properties. We give a characterization of fuzzy BE-algebras, and discuss a characterization of fuzzy BE-algebras in terms of level subalgebras of fuzzy BE-algebras.

AMS Mathematics Subject Classification : 06F35, 03G25. *Key words and phrases* : (fuzzy) *BE*-algebra, level subalgebra, normal fuzzy *BE*-algebra.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCKalgebras and BCI-algebras [5,6]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [3,4] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim [12] introduced the notion of d-algebras which is another generalization of BCK-algebras, and also they introduced the notion of B-algebras [13,14] which is equivalent in some sense to the groups. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim [10] introduced a new notion, called an BHalgebra, which is a generalization of BCH/BCI/BCK-algebras. A. Walendziak obtained another equivalent axioms for B-algebra [15]. H. S. Kim, Y. H. Kim and J. Neggers [9] introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. C. B. Kim and H. S. Kim [7] introduced the notion of a BM-algebra which is a specialization of B-algebras. They proved that the class of BM-algebras is a proper subclass of B-algebras and also showed that a BM-algebra is equivalent to a 0-commutative B-algebra. In [8], H.S. Kim and Y. H. Kim introduced the notion of a *BE*-algebra as a generalization of a BCK-algebra. Using the notion of upper sets they gave an equivalent condition

© 2011 Korean SIGCAM and KSCAM.

of a filter in *BE*-algebras. In [1,2], S. S. Ahn and K. S. So introduced the notion of ideals in *BE*-algebras, and then discussed several characterizations of such ideals. Also they generalized the notion of upper sets in *BE*-algebras, and discussed several properties of the characterizations of generalized upper sets $A_n(u, v)$ while relating them to the structure of ideals in transitive and self distributive *BE*-algebras.

In this paper, we fuzzify the concept of BE-algebras, investigate some of their properties. We give a characterization of fuzzy BE-algebras, and discuss a characterization of fuzzy BE-algebras in terms of level subalgebras of fuzzy BE-algebras.

2. Preliminaries.

We recall some definitions and results discussed in [1,2,8].

Definition 2.1. An algebra (X; *, 1) of type (2, 0) is called a *BE*-algebra if

 $\begin{array}{ll} (\text{BE1}) \ x \ast x = 1 \ \text{for all} \ x \in X; \\ (\text{BE2}) \ x \ast 1 = 1 \ \text{for all} \ x \in X; \\ (\text{BE3}) \ 1 \ast x = x \ \text{for all} \ x \in X; \\ (\text{BE4}) \ x \ast (y \ast z) = y \ast (x \ast z) \ \text{for all} \ x, y, z \in X \ (exchange) \end{array}$

We introduce a relation " \leq " on X defined by $x \leq y$ if and only if x * y = 1. A non-empty subset A of X is said to be a *subalgebra* of a *BE*-algebra X if it is closed under the operation "*". Noticing that x * x = 1 for all $x \in X$, it is clear that $1 \in A$.

Proposition 2.1. If (X; *, 1) is a *BE*-algebra, then x * (y * x) = 1 for any $x, y \in X$.

Example 2.2. Let $X := \{1, a, b, c, d, 0\}$ be a set with the following table:

*	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then (X; *, 1) is a BE-algebra.

Definition 2.2. Let (X; *, 1) be a *BE*-algebra and let *F* be a non-empty subset of *X*. Then *F* is said to be a *filter* of *X* if

- (F1) $1 \in F$;
- (F2) $x * y \in F$ and $x \in F$ imply $y \in F$.

In Example 2.2, $F_1 := \{1, a, b\}$ is a filter of X, but $F_2 := \{1, a\}$ is not, since $a * b \in F_2$ and $a \in F_2$, but $b \notin F_2$.

Definition 2.3. A *BE*-algebra (X, *, 1) is said to be *self distributive* if x*(y*z) = (x*y)*(x*z) for all $x, y, z \in X$.

Example 2.3. Let $X := \{1, a, b, c, d\}$ be a set with the following table:

*	1	a	b	c	d
1	1	a	b	С	d
a	1	1	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

It is easy to see that X is a BE-algebra satisfying self distributivity.

Note that the *BE*-algebra in Example 2.2 is not self distributive, since d * (a * 0) = d * d = 1, while (d * a) * (d * 0) = 1 * a = a.

Proposition 2.4. If (X; *, 1) is a self-distributive BE-algebra, then it is transitive.

Proposition 2.5. Let X := (X; *, 1) be a *BE*-algebra and *F* be a filter of *X*. If $x \le y$ and $x \in F$ for any $y \in X$, then $y \in F$.

Proposition 2.6. Let X be a self distributive BE-algebra. Then for any $x, y, z \in X$,

(1) if $x \le y$, then $z * x \le z * y$ and $y * z \le x * z$; (2) $y * z \le (z * x) * (y * x)$.

3. Fuzzy *BE*-algebras.

In what follows, let X be a BE-algebra unless otherwise specified.

Definition 3.1. A fuzzy set μ in X is called a *fuzzy BE-algebra* of X if it satisfies: for all $x, y \in X$.

$$\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$$

A fuzzy set μ in X is a function $\mu : X \to [0, 1]$. We note that x * x = 1 for all $x \in X$ and so if μ is a fuzzy *BE*-algebra of X, then $\mu(1) \ge \mu(x)$ for all $x \in X$.

Proposition 3.1. Let μ be a fuzzy BE-algebra of X and let $a \in X$. If μ is decreasing, then it is constant.

Proof. We note that $\mu(x) \leq \mu(1)$ for all $x \in X$. Since $x \leq 1$ for all $x \in X$, $\mu(x) \geq \mu(1)$ because μ is decreasing. Hence $\mu(x) = \mu(1)$ for all $x \in X$. Thus μ is constant.

Example 3.2. Let $X := \{1, a, b, c, d, 0\}$ be the BE-algebra as in Example 2.2 and let $A := \{1, a, b\}$. Let $t_1, t_2 \in [0, 1]$ be such that $t_1 > t_2$. Define a mapping $\mu : X \to [0, 1]$ by $\mu(1) = \mu(a) = \mu(b) = t_1$ and $\mu(c) = \mu(d) = \mu(0) = t_2$. Then μ is a fuzzy BE-algebra of X. **Theorem 3.3.** Let μ be a fuzzy set in a BE-algebra X. Then μ is a fuzzy BEalgebra of X if and only if for every $\alpha \in [0, 1]$, the level subset μ_{α} is a subalgebra of X, when $\mu_{\alpha} \neq \emptyset$.

Proof. Let μ be a fuzzy BE-algebra of X and let $x, y \in \mu_{\alpha}$ for every $\alpha \in [0, 1]$ with $\mu_{\alpha} \neq \emptyset$. Then $\mu(x*y) \geq \min\{\mu(x), \mu(y)\} \geq \alpha$, which implies that $\mu(x*y) \geq \alpha$. Hence $x * y \in \mu_{\alpha}$. Thus μ_{α} is a subalgebra of X. Conversely, assume that μ_{α} is a subalgebra of X for every $\alpha \in [0, 1]$ with $\mu_{\alpha} \neq \emptyset$. Let $x, y \in X$ and let $\mu(x) = \alpha_1$ and $\mu(y) = \alpha_2$. Then $x \in \mu_{\alpha_1}$ and $y \in \mu_{\alpha_2}$. Without loss of generality, we may assume that $\alpha_1 \leq \alpha_2$. Then $\mu_{\alpha_2} \subseteq \mu_{\alpha_1}$ and so $y \in \mu_{\alpha_1}$. Since μ_{α_1} is a subalgebra of X, we have $x * y \in \mu_{\alpha_1}$. Hence $\mu(x * y) \geq \alpha_1 = \min\{\mu(x), \mu(y)\}$. Therefore μ is a fuzzy BE-algebra of X.

Definition 3.2. Let μ be a fuzzy *BE*-algebra of *X*. Each subalgebra μ_{α} of *X*, $\alpha \in [0, 1]$, is called a *level subalgebra* of μ , when $\mu_{\alpha} \neq \emptyset$.

Theorem 3.4. Let A be a subalgebra of a BE-algebra X and let $\mu : X \to [0, 1]$ be a fuzzy set defined by, for all $x \in X$,

$$\mu(x) = \begin{cases} \alpha_0 & \text{if } x \in A \\ \alpha_1 & \text{if } x \notin A \end{cases}$$

where $\alpha_0, \alpha_1 \in [0, 1], \alpha_0 > \alpha_1$. Then μ is a fuzzy BE-algebra of X.

Proof. Let $x, y \in X$. If at least one of x and y does not belong to A, then $\mu(x * y) \ge \alpha_1 = \min\{\mu(x), \mu(y)\}$, since α_1 is the minimum value of μ . If $x, y \in A$, then $x * y \in A$. Hence $\mu(x * y) = \min\{\mu(x), \mu(y)\}$. Therefore μ is a fuzzy *BE*-algebra of X.

Corollary 3.5. Any subalgebra of a BE-algebra of X can be realized as a level subalgebra of some fuzzy BE-algebra of X.

Proof. Let A be a subalgebra of X and let μ be a fuzzy set in X defined by

$$\mu(x) = \begin{cases} \alpha & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

where α is fixed number in (0, 1]. Taking $\alpha_0 = \alpha$ and $\alpha_1 = 0$ in Theorem 3.4, we know that μ is a fuzzy *BE*-algebra of *X*, and obviously $\mu_{\alpha} = A$. This completes the proof.

We can generalize Theorem 3.4 as follows:

Theorem 3.6. Let $\{A_n\}_{n=0}^{\infty}$ be a strictly decreasing sequence of subalgebras of BE-algebra $X = A_0$ and let $\{\alpha_n\}_{n=0}^{\infty}$ be a strictly increasing sequence in (0,1). Then there is a fuzzy BE-algebra μ of X such that $\mu_{\alpha_n} = A_n$ for all $n = 0, 1, 2, \cdots$.

Proof. Define a fuzzy set $\mu: X \to [0,1]$ by

$$\mu(x) = \begin{cases} \alpha_n & \text{if } x \in A_n - A_{n+1} \\ \lim_{n \to \infty} \alpha_n & \text{if } x \in \bigcap_{n=1}^{\infty} A_n. \end{cases}$$

It is easily seen that μ is a fuzzy *BE*-algebra of X and that $\mu_{\alpha_n} = A_n$ for all $n = 0, 1, 2, \cdots$.

Proposition 3.7. If μ is a fuzzy *BE*-algebra of *X*, then the set $X_{\mu} := \{x \in X | \mu(x) = \mu(1)\}$ is a subalgebra of *X*.

Proof. Noticing that $\mu(x) \leq \mu(1)$ for all $x \in X$, we have

$$\mu_{\mu(1)} = \{x \in X | \mu(x) \ge \mu(1)\} = \{x \in X | \mu(x) = \mu(1)\} = X_{\mu}.$$

By Theorem 3.3, we know that X_{μ} is a subalgebra of X.

Theorem 3.8. Let μ be a fuzzy *BE*-algebra of *X*. Then two level subalgebras $\mu_{\alpha_1}, \mu_{\alpha_2}$ with $\alpha_1 < \alpha_2$ of μ are equal if and only if there is no $x \in X$ such that $\alpha_1 \leq \mu(x) < \alpha_2$.

Proof. Suppose that $\alpha_1 < \alpha_2$ and $\mu_{\alpha_1} = \mu_{\alpha_2}$. If there exists $x \in X$ such that $\alpha_1 \leq \mu(x) < \alpha_2$, then μ_{α_2} is a proper subset of μ_{α_1} . This is impossible.

Conversely, suppose that there is no $x \in X$ such that $\alpha_1 \leq \mu(x) < \alpha_2$. Note that $\alpha_1 < \alpha_2$ implies $\mu_{\alpha_2} \subseteq \mu_{\alpha_1}$. If $x \in \mu_{\alpha_1}$, then $\mu(x) \geq \alpha_1$, and so $\mu(x) \geq \alpha_2$ because $\mu(x) \not< \alpha_2$. Hence $x \in \mu_{\alpha_2}$, which says that $\mu_{\alpha_1} \subseteq \mu_{\alpha_2}$. Thus $\mu_{\alpha_1} = \mu_{\alpha_2}$. This completes the proof.

Remark 3.1. As a consequence of Theorem 3.8, the level subalgebras of a fuzzy BE-algebra μ of X which has a countable image form a chain. But $\mu(x) \leq \mu(1)$ for all $x \in X$, and so $\mu_{\mu(1)}$ is the smallest level subalgebra of a fuzzy BE-algebra, but not always $\mu_{\mu(1)} = \{1\}$ as shown in the following example. Thus we have a chain

$$X = \mu_{\alpha_0} \supseteq \mu_{\alpha_1} \supseteq \cdots \supseteq \mu_{\alpha_k} \supseteq \cdots,$$

where $\alpha_0 < \alpha_1 < \cdots < \alpha_k < \cdots$ and $\mu(1) = \lim_{n \to \infty} \alpha_n$.

Example 3.9. Let A be a proper subalgebra of a BE-algebra X and let μ be a fuzzy BE-algebra of X in the proof to Corollary 3.5. Then $Im(\mu) = \{0, \alpha\}$, and two level subalgebras of μ are $\mu_0 = X$ and $\mu_\alpha = A$. Thus we have $\mu(1) = \alpha$ but $\mu_\alpha = A \neq \{1\}$.

Corollary 3.10. Let μ be a fuzzy BE-algebra of X. If $Im(\mu) = \{\alpha_1, \dots, \alpha_n\}$, where $\alpha_1 < \alpha_2 < \dots < \alpha_n$, then the family of subalgebras μ_{α_i} of $\mu(i = 1, 2, \dots, n)$ constitutes all the level subalgebras of μ .

Proof. Let $\alpha \in [0, 1]$ and $\alpha \notin Im(\mu)$. If $\alpha < \alpha_1$, then $\mu_{\alpha_1} \subseteq \mu_{\alpha}$. Since $\mu_{\alpha_1} = X$, we have $\mu_{\alpha} = X$ and $\mu_{\alpha} = \mu_{\alpha_1}$. If $\alpha_i < \alpha < \alpha_{i+1}$ $(1 \le i \le n-1)$, then there is no $x \in X$ such that $\alpha \le \mu(x) < \alpha_{i+1}$. Using Theorem 3.8, we obtain $\mu_{\alpha} = \mu_{\alpha_{i+1}}$. This shows that for any $\alpha \in [0, 1]$ with $\alpha \le \mu(1)$, the level subalgebra μ_{α} is in $\{\mu_{\alpha_i} | 1 \le i \le n\}$.

Theorem 3.11. Let μ be a fuzzy BE-algebra of X with $Im(\mu) = \{\alpha_i | i \in \wedge\}$ and $\mathcal{A} = \{\mu_{\alpha_i} | i \in \wedge\}$ where \wedge is an arbitrary index set. Then

- (i) There exists a unique $i_0 \in \wedge$ such that $\alpha_{i_0} > \alpha_i$ for all $i \in \wedge$.
- (ii) $X_{\mu} = \bigcap_{i \in \wedge} \mu_{\alpha_i} = \mu_{\alpha_{i_0}}.$
- (iii) $X = \bigcup_{i \in \wedge} \mu_{\alpha_i}$.
- (iv) The members of \mathcal{A} form a chain.
- (v) If μ attains its infimum on all subalgebras of X, then A contains all level subalgebras of μ .

Proof. (i) Since $\mu(1) \in Im(\mu)$, there exists a unique $i_0 \in \wedge$ such that $\alpha_{i_0} = \mu(1) \geq \mu(x)$ for all $x \in X$ so that $\alpha_{i_0} \geq \alpha$ for all $i \in \wedge$. (ii) We know that

$$\mu_{\alpha_{i_0}} = \{ x \in X | \mu(x) \ge \alpha_{i_0} \}$$

= $\{ x \in X | \mu(x) = \alpha_{i_0} \}$
= $\{ x \in X | \mu(x) = \mu(1) \}$
= $X_{\mu}.$

Since $\alpha_{i_0} \geq \alpha_i$ for all $i \in \Lambda$, therefore clearly $\mu_{\alpha_{i_0}} \subseteq \mu_{\alpha_i}$ for all $i \in \Lambda$. Hence $\mu_{\alpha_{i_0}} \subseteq \bigcap_{i \in \Lambda} \mu_{\alpha_i}$, and so $\mu_{\alpha_{i_0}} = \bigcap_{i \in \Lambda} \mu_{\alpha_i}$, because $i_0 \in \Lambda$.

(iii) It is sufficient to show that $X \subseteq \bigcup_{i \in \wedge} \mu_{\alpha_i}$. Let $x \in X$. Then $\mu(x) \in Im(\mu)$ and so there exists $i(x) \in \wedge$ such that $\mu(x) = \alpha_{i(x)}$. This implies $x \in \mu_{\alpha(i)} \subset \bigcup_{i \in \wedge} \mu_{\alpha_i}$. This proves (iii).

(iv) Note that for any $i, j \in \Lambda$, either $\alpha_i \geq \alpha_j$ or $\alpha_i \leq \alpha_j$; hence $\mu_{\alpha_i} \subseteq \mu_{\alpha_j}$ or $\mu_{\alpha_j} \subseteq \mu_{\alpha_i}$. Therefore the members of \mathcal{A} form a chain.

(v) Assume that μ attains its infimum on all subalgebras of X. Let μ_{α} be a level subalgebra of μ . If $\alpha = \alpha_i$ for some $i \in \wedge$, then clearly $\mu_{\alpha} \in \mathcal{A}$. Assume that $\alpha \neq \alpha_i$ for all $i \in \wedge$. Then there is no $x \in X$ such that $\mu(x) = \alpha$. Let $A = \{x \in X | \mu(x) > \alpha\}$. Obviously $1 \in A$, and so $A \neq \emptyset$. Let $x, y \in A$. Then $\mu(x) > \alpha$ and $\mu(y) > \alpha$. Since μ is a fuzzy *BE*-algebra of X, it follows that

$$\mu(x * y) \ge \min\{\mu(x), \mu(y)\} > \alpha$$

so that $\mu(x*y) > \alpha$, i.e., $x*y \in A$. Hence A is a subalgebra of X. By hypothesis, there exists $y \in A$ such that $\mu(y) = \inf\{\mu(x) | x \in X\}$. Now $\mu(y) \in Im(\mu)$ implies $\mu(y) = \alpha_i$ for some $i \in \wedge$. Obviously $\alpha_i \geq \alpha$, and so by assumption $\alpha_i > \alpha$. Note that there is no $z \in X$ such that $\alpha \leq \mu(z) < \alpha_i$. It follows from Theorem 3.8 that $\mu_{\alpha} = \mu_{\alpha_i}$. Hence $\mu_{\alpha} \in \mathcal{A}$. This completes the proof. \Box

4. Normal fuzzy *BE*-algebras.

Definition 4.1. A fuzzy *BE*-algebra μ of *X* is said to be *normal* if there exists $x \in X$ such that $\mu(x) = 1$.

Let μ and σ be any two fuzzy subsets of a set X. Then μ is said to be contained in σ , denoted by $\mu \subseteq \sigma$, if $\mu(x) \leq \sigma(x)$ for all $x \in X$. If $\mu(x) = \sigma(x)$ for all $x \in X$, μ and σ are said to be equal and we write $\mu = \sigma$. We note that if μ

Fuzzy BE-algebras

is a normal fuzzy *BE*-algebra of *X*, then $\mu(1) = 1$. Hence we have the following characterization.

Theorem 4.1. A fuzzy *BE*-algebra μ of X is normal if and only if $\mu(1) = 1$.

Theorem 4.2. If μ is a fuzzy BE-algebra of X, then the fuzzy set μ^+ of X defined by $\mu^+(x) := \mu(x) + 1 - \mu(1)$ for all $x \in X$ is a normal fuzzy BE-algebra of X containing μ .

Proof. Assume that μ is a fuzzy *BE*-algebra of X and let $x, y \in X$. Then

$$\mu^{+}(x * y) = \mu(x * y) + 1 - \mu(1)$$

$$\geq \min\{\mu(x), \mu(y)\} + 1 - \mu(1)$$

$$= \min\{\mu(x) + 1 - \mu(1), \mu(y) + 1 - \mu(1)\}$$

$$= \min\{\mu^{+}(x), \mu^{+}(y)\}$$

and $\mu^+(1) = \mu(1) + 1 - \mu(1) = 1$. Hence μ^+ is a normal fuzzy *BE*-algebra of *X*, and clearly $\mu \subset \mu^+$. This completes the proof.

Theorem 4.3. Let μ and ν be fuzzy *BE*-algebras of *X*. If $\mu \subset \nu$ and $\mu(1) = \nu(1)$, then $X_{\mu} \subset X_{\nu}$.

Proof. Assume that $\mu \subset \nu$ and $\mu(1) = \nu(1)$. If $x \in X_{\mu}$ then $\nu(x) \geq \mu(x) = \mu(1) = \nu(1)$. Noticing that $\nu(x) \leq \nu(1)$ for all $x \in X$, we have $\nu(x) = \nu(1)$, i.e., $x \in X_{\nu}$. This completes the proof.

Corollary 4.4. If μ and ν are normal fuzzy BE-algebras of X satisfying $\mu \subset \nu$, then $X_{\mu} \subset X_{\nu}$.

Theorem 4.5. A fuzzy BE-algebra μ of X is normal if and only if $\mu^+ = \mu$.

Proof. The sufficiency is obvious. Assume that μ is a normal fuzzy *BE*-algebra of X and let $x \in X$. Then $\mu^+(x) = \mu(x) + 1 - \mu(1) = \mu(x)$, and hence $\mu^+ = \mu$, ending the proof.

Theorem 4.6. If μ is a fuzzy BE-algebra of X, then $(\mu^+)^+ = \mu^+$.

Proof. For any $x \in X$, we have $(\mu^+)^+(x) = \mu^+(x) + 1 - \mu^+(1) = \mu^+(x)$, completing the proof.

Theorem 4.7. Let μ be a fuzzy BE-algebra of X. If there exists a fuzzy BEalgebra ν of X satisfying $\nu^+ \subset \mu$, then μ is normal.

Proof. Suppose there exists a fuzzy *BE*-algebra ν of *X* such that $\nu^+ \subset \mu$. Then $1 = \nu^+(1) \leq \mu(1)$, whence $\mu(1) = 1$. The proof is complete.

Corollary 4.8. Let μ be a fuzzy BE-algebra of X. If there exists a fuzzy BE-algebra ν of X satisfying $\nu^+ \subset \mu$, then $\mu^+ = \mu$.

Theorem 4.9. Let μ be a fuzzy BE-algebra of X and let $f : [0, \mu(1)] \to [0, 1]$ be an increasing function. Define a fuzzy set $\mu_f : X \to [0, 1]$ by $\mu_f(x) := f(\mu(x))$ for all $x \in X$. Then μ_f is a fuzzy BE-algebra of X. In particular, if $f(\mu(1)) = 1$, then μ_f is normal, and if $f(\alpha) \ge \alpha$ for all $\alpha \in [0, \mu(1)]$, then $\mu \subset \mu_f$.

Proof. Let $x, y \in X$. Then

$$\mu_f(x * y) = f(\mu(x * y)) \geq f(\min\{\mu(x), \mu(y)\}) = \min\{f(\mu(x)), f(\mu(y))\} = \min\{\mu_f(x), \mu_f(y)\}.$$

Hence μ_f is a fuzzy *BE*-algebra of *X*. If $f(\mu(1)) = 1$ then clearly μ_f is normal. Assume that $f(\alpha) \ge \alpha$ for all $\alpha \in [0, \mu(1)]$. Then $\mu_f(x) = f(\mu(x)) \ge \mu(x)$ for all $x \in X$, which proves that $\mu \subset \mu_f$.

Theorem 4.10. Let μ be a non-constant normal fuzzy BE-algebra of X, which is maximal in the poset of normal fuzzy BE-algebras under set inclusion. Then μ takes only the values 0 and 1.

Proof. Note that $\mu(1) = 1$. Let $x \in X$ be such that $\mu(x) \neq 1$. It sufficient to show that $\mu(x) = 0$. Assume that there exists $a \in X$ such that $0 < \mu(a) < 1$. Define a fuzzy set $\nu : X \to [0, 1]$ by $\nu(x) := \frac{1}{2} \{\mu(x) + \mu(a)\}$ for all $x \in X$. Then clearly ν is well-defined. Let $x, y \in X$. Then

$$\begin{split} \nu(x*y) &= \frac{1}{2} \{ \mu(x*y) + \mu(a) \} \\ &= \frac{1}{2} \mu(x*y) + \frac{1}{2} \mu(a) \\ &\geq \frac{1}{2} \min\{\mu(x), \mu(y)\} + \frac{1}{2} \mu(a) \\ &= \min\{\frac{1}{2} (\mu(x) + \mu(a)), \frac{1}{2} (\mu(y) + \mu(a))\} \\ &= \min\{\nu(x), \nu(y)\}, \end{split}$$

which proves that ν is a fuzzy *BE*-algebra of *X*. Now we have

$$\nu^{+}(x) = \nu(x) + 1 - \nu(1)$$

= $\frac{1}{2} \{\mu(x) + \mu(a)\} + 1 - \frac{1}{2} \{\mu(1) + \mu(a)\}$
= $\frac{1}{2} \{\mu(x) + 1\}$

and so $\nu^+(1) = \frac{1}{2} \{\mu(1) + 1\} = 1$. Hence ν^+ is a normal fuzzy *BE*-algebra of *X*. From $\nu^+(a) > \mu(a)$ it follows that μ is not maximal. This is a contradiction and the proof is complete.

Fuzzy BE-algebras

References

- S. S. Ahn and K. K. So, On ideals and upper sets in BE-algebras, Sci. Math. Japon. 68 (2008), 279-285.
- S. S. Ahn and K. K. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46 (2009), 281-287.
- 3. Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- 4. Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- 6. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- 7. C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japo. 63(3) (2006), 421-427.
- 8. H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Japo. 66(2007), 113-116.
- H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26(4) (2004) 471-481.
- 10. Y. B. Jun, E. H. Roh and H. S. Kim, $On\,BH\text{-}algebras,$ Sci. Math. Japon. $\mathbf{1}(1998),\,347\text{-}354.$
- 11. J. Meng and Y. B. Jun, *BCK*-algebras, Kyung Moon Sa, Seoul (1994).
- 12. J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
- 13. J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
- J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 215-219.
- 15. A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56(3) (2006), 301-306.

Sun Shin Ahn is working as a professor in Department of Mathematics Education and is interested in BE-algebras.

Department of Mathematics Education Dongguk University Seoul 100-715, Korea. e-mail: sunshine@dongguk.edu

Young Hee Kim is working as a professor in Department of Mathematics and is interested in BE-algebras.

Department of Mathematics Chungbuk National University Chongju, 361-763, Korea. e-mail:yhkim@chungbuk.ac.kr

Keum Sook So is working as a professor in Department of Mathematics and is interested in Fuzzy-algebras.

Department of Mathematics Hallym University Chuncheon 200-702, Korea. ksso@hallym.ac.kr