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FUZZY BE-ALGEBRAS†

SUN SHIN AHN, YOUNG HEE KIM∗ AND KEUM SOOK SO

Abstract. In this paper, we fuzzify the concept of BE-algebras, inves-
tigate some of their properties. We give a characterization of fuzzy BE-
algebras, and discuss a characterization of fuzzy BE-algebras in terms of
level subalgebras of fuzzy BE-algebras.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras [5,6]. It is known that the class of BCK-algebras
is a proper subclass of the class of BCI-algebras. In [3,4] Q. P. Hu and X. Li
introduced a wide class of abstract algebras: BCH-algebras. They have shown
that the class of BCI-algebras is a proper subclass of the class of BCH-algebras.
J. Neggers and H. S. Kim [12] introduced the notion of d-algebras which is
another generalization of BCK-algebras, and also they introduced the notion of
B-algebras [13,14] which is equivalent in some sense to the groups. Moreover, Y.
B. Jun, E. H. Roh and H. S. Kim [10] introduced a new notion, called an BH-
algebra, which is a generalization of BCH/BCI/BCK-algebras. A. Walendziak
obtained another equivalent axioms for B-algebra [15]. H. S. Kim, Y. H. Kim
and J. Neggers [9] introduced the notion a (pre-) Coxeter algebra and showed
that a Coxeter algebra is equivalent to an abelian group all of whose elements
have order 2, i.e., a Boolean group. C. B. Kim and H. S. Kim [7] introduced the
notion of a BM -algebra which is a specialization of B-algebras. They proved
that the class of BM -algebras is a proper subclass of B-algebras and also showed
that a BM -algebra is equivalent to a 0-commutative B-algebra. In [8], H.S. Kim
and Y. H. Kim introduced the notion of a BE-algebra as a generalization of a
BCK-algebra. Using the notion of upper sets they gave an equivalent condition
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of a filter in BE-algebras. In [1,2], S. S. Ahn and K. S. So introduced the
notion of ideals in BE-algebras, and then discussed several characterizations
of such ideals. Also they generalized the notion of upper sets in BE-algebras,
and discussed several properties of the characterizations of generalized upper
sets An(u, v) while relating them to the structure of ideals in transitive and self
distributive BE-algebras.

In this paper, we fuzzify the concept of BE-algebras, investigate some of
their properties. We give a characterization of fuzzy BE-algebras, and discuss
a characterization of fuzzy BE-algebras in terms of level subalgebras of fuzzy
BE-algebras.

2. Preliminaries.

We recall some definitions and results discussed in [1,2,8].

Definition 2.1. An algebra (X; ∗, 1) of type (2, 0) is called a BE-algebra if

(BE1) x ∗ x = 1 for all x ∈ X;
(BE2) x ∗ 1 = 1 for all x ∈ X;
(BE3) 1 ∗ x = x for all x ∈ X;
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X (exchange)

We introduce a relation “≤” on X defined by x ≤ y if and only if x ∗ y = 1. A
non-empty subset A of X is said to be a subalgebra of a BE-algebra X if it is
closed under the operation “ ∗ ”. Noticing that x ∗x = 1 for all x ∈ X, it is clear
that 1 ∈ A.

Proposition 2.1. If (X; ∗, 1) is a BE-algebra, then x ∗ (y ∗ x) = 1 for any
x, y ∈ X.

Example 2.2. Let X := {1, a, b, c, d, 0} be a set with the following table:

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then (X; ∗, 1) is a BE-algebra.

Definition 2.2. Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset
of X. Then F is said to be a filter of X if

(F1) 1 ∈ F ;
(F2) x ∗ y ∈ F and x ∈ F imply y ∈ F .

In Example 2.2, F1 := {1, a, b} is a filter of X, but F2 := {1, a} is not, since
a ∗ b ∈ F2 and a ∈ F2, but b 6∈ F2.
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Definition 2.3. ABE-algebra (X, ∗, 1) is said to be self distributive if x∗(y∗z) =
(x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.

Example 2.3. Let X := {1, a, b, c, d} be a set with the following table:

∗ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

It is easy to see that X is a BE-algebra satisfying self distributivity.

Note that the BE-algebra in Example 2.2 is not self distributive, since d∗ (a∗
0) = d ∗ d = 1, while (d ∗ a) ∗ (d ∗ 0) = 1 ∗ a = a.

Proposition 2.4. If (X; ∗, 1) is a self-distributive BE-algebra, then it is tran-
sitive.

Proposition 2.5. Let X := (X; ∗, 1) be a BE-algebra and F be a filter of X.
If x ≤ y and x ∈ F for any y ∈ X, then y ∈ F .

Proposition 2.6. Let X be a self distributive BE-algebra. Then for any x, y, z ∈
X,

(1) if x ≤ y, then z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z;
(2) y ∗ z ≤ (z ∗ x) ∗ (y ∗ x).

3. Fuzzy BE-algebras.

In what follows, let X be a BE-algebra unless otherwise specified.

Definition 3.1. A fuzzy set µ in X is called a fuzzy BE-algebra of X if it
satisfies: for all x, y ∈ X.

µ(x ∗ y) ≥ min{µ(x), µ(y)}.
A fuzzy set µ in X is a function µ : X → [0, 1]. We note that x ∗ x = 1 for all

x ∈ X and so if µ is a fuzzy BE-algebra of X, then µ(1) ≥ µ(x) for all x ∈ X.

Proposition 3.1. Let µ be a fuzzy BE-algebra of X and let a ∈ X. If µ is
decreasing, then it is constant.

Proof. We note that µ(x) ≤ µ(1) for all x ∈ X. Since x ≤ 1 for all x ∈
X, µ(x) ≥ µ(1) because µ is decreasing. Hence µ(x) = µ(1) for all x ∈ X. Thus
µ is constant. ¤
Example 3.2. Let X := {1, a, b, c, d, 0} be the BE-algebra as in Example 2.2
and let A := {1, a, b}. Let t1, t2 ∈ [0, 1] be such that t1 > t2. Define a mapping
µ : X → [0, 1] by µ(1) = µ(a) = µ(b) = t1 and µ(c) = µ(d) = µ(0) = t2. Then µ
is a fuzzy BE-algebra of X.
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Theorem 3.3. Let µ be a fuzzy set in a BE-algebra X. Then µ is a fuzzy BE-
algebra of X if and only if for every α ∈ [0, 1], the level subset µα is a subalgebra
of X, when µα 6= ∅.
Proof. Let µ be a fuzzy BE-algebra of X and let x, y ∈ µα for every α ∈ [0, 1]
with µα 6= ∅. Then µ(x∗y) ≥ min{µ(x), µ(y)} ≥ α, which implies that µ(x∗y) ≥
α. Hence x ∗ y ∈ µα. Thus µα is a subalgebra of X. Conversely, assume that
µα is a subalgebra of X for every α ∈ [0, 1] with µα 6= ∅. Let x, y ∈ X and let
µ(x) = α1 and µ(y) = α2. Then x ∈ µα1

and y ∈ µα2
. Without loss of generality,

we may assume that α1 ≤ α2. Then µα2 ⊆ µα1 and so y ∈ µα1 . Since µα1 is a
subalgebra of X, we have x ∗ y ∈ µα1

. Hence µ(x ∗ y) ≥ α1 = min{µ(x), µ(y)}.
Therefore µ is a fuzzy BE-algebra of X. ¤

Definition 3.2. Let µ be a fuzzy BE-algebra of X. Each subalgebra µα of X,
α ∈ [0, 1], is called a level subalgebra of µ, when µα 6= ∅.
Theorem 3.4. Let A be a subalgebra of a BE-algebra X and let µ : X → [0, 1]
be a fuzzy set defined by, for all x ∈ X,

µ(x) =

{
α0 if x ∈ A

α1 if x /∈ A

where α0, α1 ∈ [0, 1], α0 > α1. Then µ is a fuzzy BE-algebra of X.

Proof. Let x, y ∈ X. If at least one of x and y does not belong to A, then
µ(x ∗ y) ≥ α1 = min{µ(x), µ(y)}, since α1 is the minimum value of µ. If
x, y ∈ A, then x ∗ y ∈ A. Hence µ(x ∗ y) = min{µ(x), µ(y)}. Therefore µ is a
fuzzy BE-algebra of X. ¤

Corollary 3.5. Any subalgebra of a BE-algebra of X can be realized as a level
subalgebra of some fuzzy BE-algebra of X.

Proof. Let A be a subalgebra of X and let µ be a fuzzy set in X defined by

µ(x) =

{
α if x ∈ A

0 if x /∈ A

where α is fixed number in (0, 1]. Taking α0 = α and α1 = 0 in Theorem 3.4, we
know that µ is a fuzzy BE-algebra of X, and obviously µα = A. This completes
the proof. ¤

We can generalize Theorem 3.4 as follows:

Theorem 3.6. Let {An}∞n=0 be a strictly decreasing sequence of subalgebras
of BE-algebra X = A0 and let {αn}∞n=0 be a strictly increasing sequence in
(0, 1). Then there is a fuzzy BE-algebra µ of X such that µαn = An for all
n = 0, 1, 2, · · · .
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Proof. Define a fuzzy set µ : X → [0, 1] by

µ(x) =

{
αn if x ∈ An −An+1

limn→∞αn if x ∈ ∩∞
n=1An.

It is easily seen that µ is a fuzzy BE-algebra of X and that µαn
= An for all

n = 0, 1, 2, · · · . ¤
Proposition 3.7. If µ is a fuzzy BE-algebra of X, then the set Xµ := {x ∈
X|µ(x) = µ(1)} is a subalgebra of X.

Proof. Noticing that µ(x) ≤ µ(1) for all x ∈ X, we have

µµ(1) = {x ∈ X|µ(x) ≥ µ(1)} = {x ∈ X|µ(x) = µ(1)} = Xµ.

By Theorem 3.3, we know that Xµ is a subalgebra of X. ¤
Theorem 3.8. Let µ be a fuzzy BE-algebra of X. Then two level subalgebras
µα1

, µα2
with α1 < α2 of µ are equal if and only if there is no x ∈ X such that

α1 ≤ µ(x) < α2.

Proof. Suppose that α1 < α2 and µα1 = µα2 . If there exists x ∈ X such that
α1 ≤ µ(x) < α2, then µα2 is a proper subset of µα1 . This is impossible.

Conversely, suppose that there is no x ∈ X such that α1 ≤ µ(x) < α2. Note
that α1 < α2 implies µα2 ⊆ µα1 . If x ∈ µα1 , then µ(x) ≥ α1, and so µ(x) ≥ α2

because µ(x) ≮ α2. Hence x ∈ µα2 , which says that µα1 ⊆ µα2 . Thus µα1 = µα2 .
This completes the proof. ¤
Remark 3.1. As a consequence of Theorem 3.8, the level subalgebras of a fuzzy
BE-algebra µ of X which has a countable image form a chain. But µ(x) ≤ µ(1)
for all x ∈ X, and so µµ(1) is the smallest level subalgebra of a fuzzy BE-algebra,
but not always µµ(1) = {1} as shown in the following example. Thus we have a
chain

X = µα0 ⊇ µα1 ⊇ · · · ⊇ µαk
⊇ · · · ,

where α0 < α1 < · · · < αk < · · · and µ(1) = limn→∞αn.

Example 3.9. Let A be a proper subalgebra of a BE-algebra X and let µ be a
fuzzy BE-algebra of X in the proof to Corollary 3.5. Then Im(µ) = {0, α}, and
two level subalgebras of µ are µ0 = X and µα = A. Thus we have µ(1) = α but
µα = A 6= {1}.
Corollary 3.10. Let µ be a fuzzy BE-algebra of X. If Im(µ) = {α1, · · · , αn},
where α1 < α2 < · · · < αn, then the family of subalgebras µαi of µ(i =
1, 2, · · · , n) constitutes all the level subalgebras of µ.

Proof. Let α ∈ [0, 1] and α /∈ Im(µ). If α < α1, then µα1 ⊆ µα. Since µα1 = X,
we have µα = X and µα = µα1 . If αi < α < αi+1 (1 ≤ i ≤ n− 1), then there is
no x ∈ X such that α ≤ µ(x) < αi+1. Using Theorem 3.8, we obtain µα = µαi+1 .
This shows that for any α ∈ [0, 1] with α ≤ µ(1), the level subalgebra µα is in
{µαi |1 ≤ i ≤ n}. ¤
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Theorem 3.11. Let µ be a fuzzy BE-algebra of X with Im(µ) = {αi|i ∈ ∧}
and A = {µαi

|i ∈ ∧} where ∧ is an arbitrary index set. Then

(i) There exists a unique i0 ∈ ∧ such that αi0 > αi for all i ∈ ∧.
(ii) Xµ = ∩i∈∧µαi = µαi0

.

(iii) X = ∪i∈∧µαi
.

(iv) The members of A form a chain.
(v) If µ attains its infimum on all subalgebras of X, then A contains all level

subalgebras of µ.

Proof. (i) Since µ(1) ∈ Im(µ), there exists a unique i0 ∈ ∧ such that αi0 =
µ(1) ≥ µ(x) for all x ∈ X so that αi0 ≥ α for all i ∈ ∧.
(ii) We know that

µαi0
= {x ∈ X|µ(x) ≥ αi0}
= {x ∈ X|µ(x) = αi0}
= {x ∈ X|µ(x) = µ(1)}
= Xµ.

Since αi0 ≥ αi for all i ∈ ∧, therefore clearly µαi0
⊆ µαi for all i ∈ ∧. Hence

µαi0
⊆ ∩i∈∧µαi , and so µαi0

= ∩i∈∧µαi , because i0 ∈ ∧.
(iii) It is sufficient to show that X ⊆ ∪i∈∧µαi . Let x ∈ X. Then µ(x) ∈ Im(µ)
and so there exists i(x) ∈ ∧ such that µ(x) = αi(x). This implies x ∈ µα(i) ⊂
∪i∈∧µαi . This proves (iii).
(iv) Note that for any i, j ∈ ∧, either αi ≥ αj or αi ≤ αj ; hence µαi ⊆ µαj or
µαj ⊆ µαi . Therefore the members of A form a chain.
(v) Assume that µ attains its infimum on all subalgebras of X. Let µα be a
level subalgebra of µ. If α = αi for some i ∈ ∧, then clearly µα ∈ A. Assume
that α 6= αi for all i ∈ ∧. Then there is no x ∈ X such that µ(x) = α. Let
A = {x ∈ X|µ(x) > α}. Obviously 1 ∈ A, and so A 6= ∅. Let x, y ∈ A. Then
µ(x) > α and µ(y) > α. Since µ is a fuzzy BE-algebra of X, it follows that

µ(x ∗ y) ≥ min{µ(x), µ(y)} > α

so that µ(x∗y) > α, i.e., x∗y ∈ A. Hence A is a subalgebra of X. By hypothesis,
there exists y ∈ A such that µ(y) = inf{µ(x)|x ∈ X}. Now µ(y) ∈ Im(µ) implies
µ(y) = αi for some i ∈ ∧. Obviously αi ≥ α, and so by assumption αi > α.
Note that there is no z ∈ X such that α ≤ µ(z) < αi. It follows from Theorem
3.8 that µα = µαi . Hence µα ∈ A. This completes the proof. ¤

4. Normal fuzzy BE-algebras.

Definition 4.1. A fuzzy BE-algebra µ of X is said to be normal if there exists
x ∈ X such that µ(x) = 1.

Let µ and σ be any two fuzzy subsets of a set X. Then µ is said to be
contained in σ, denoted by µ ⊆ σ, if µ(x) ≤ σ(x) for all x ∈ X. If µ(x) = σ(x)
for all x ∈ X, µ and σ are said to be equal and we write µ = σ. We note that if µ
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is a normal fuzzy BE-algebra of X, then µ(1) = 1. Hence we have the following
characterization.

Theorem 4.1. A fuzzy BE-algebra µ of X is normal if and only if µ(1) = 1.

Theorem 4.2. If µ is a fuzzy BE-algebra of X, then the fuzzy set µ+ of X
defined by µ+(x) := µ(x) + 1− µ(1) for all x ∈ X is a normal fuzzy BE-algebra
of X containing µ.

Proof. Assume that µ is a fuzzy BE-algebra of X and let x, y ∈ X. Then

µ+(x ∗ y) = µ(x ∗ y) + 1− µ(1)

≥ min{µ(x), µ(y)}+ 1− µ(1)

= min{µ(x) + 1− µ(1), µ(y) + 1− µ(1)}
= min{µ+(x), µ+(y)}

and µ+(1) = µ(1)+1−µ(1) = 1. Hence µ+ is a normal fuzzy BE-algebra of X,
and clearly µ ⊂ µ+. This completes the proof. ¤

Theorem 4.3. Let µ and ν be fuzzy BE-algebras of X. If µ ⊂ ν and µ(1) =
ν(1), then Xµ ⊂ Xν .

Proof. Assume that µ ⊂ ν and µ(1) = ν(1). If x ∈ Xµ then ν(x) ≥ µ(x) =
µ(1) = ν(1). Noticing that ν(x) ≤ ν(1) for all x ∈ X, we have ν(x) = ν(1), i.e.,
x ∈ Xν . This completes the proof. ¤

Corollary 4.4. If µ and ν are normal fuzzy BE-algebras of X satisfying µ ⊂ ν,
then Xµ ⊂ Xν .

Theorem 4.5. A fuzzy BE-algebra µ of X is normal if and only if µ+ = µ.

Proof. The sufficiency is obvious. Assume that µ is a normal fuzzy BE-algebra
of X and let x ∈ X. Then µ+(x) = µ(x) + 1− µ(1) = µ(x), and hence µ+ = µ,
ending the proof. ¤

Theorem 4.6. If µ is a fuzzy BE-algebra of X, then (µ+)+ = µ+.

Proof. For any x ∈ X, we have (µ+)+(x) = µ+(x) + 1 − µ+(1) = µ+(x), com-
pleting the proof. ¤

Theorem 4.7. Let µ be a fuzzy BE-algebra of X. If there exists a fuzzy BE-
algebra ν of X satisfying ν+ ⊂ µ, then µ is normal.

Proof. Suppose there exists a fuzzy BE-algebra ν of X such that ν+ ⊂ µ.
Then 1 = ν+(1) ≤ µ(1), whence µ(1) = 1. The proof is complete. ¤

Corollary 4.8. Let µ be a fuzzy BE-algebra of X. If there exists a fuzzy BE-
algebra ν of X satisfying ν+ ⊂ µ, then µ+ = µ.
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Theorem 4.9. Let µ be a fuzzy BE-algebra of X and let f : [0, µ(1)] → [0, 1] be
an increasing function. Define a fuzzy set µf : X → [0, 1] by µf (x) := f(µ(x))
for all x ∈ X. Then µf is a fuzzy BE-algebra of X. In particular, if f(µ(1)) = 1,
then µf is normal, and if f(α) ≥ α for all α ∈ [0, µ(1)], then µ ⊂ µf .

Proof. Let x, y ∈ X. Then

µf (x ∗ y) = f(µ(x ∗ y))
≥ f(min{µ(x), µ(y)})
= min{f(µ(x)), f(µ(y))}
= min{µf (x), µf (y)}.

Hence µf is a fuzzy BE-algebra of X. If f(µ(1)) = 1 then clearly µf is normal.
Assume that f(α) ≥ α for all α ∈ [0, µ(1)]. Then µf (x) = f(µ(x)) ≥ µ(x) for
all x ∈ X, which proves that µ ⊂ µf . ¤
Theorem 4.10. Let µ be a non-constant normal fuzzy BE-algebra of X, which
is maximal in the poset of normal fuzzy BE-algebras under set inclusion. Then
µ takes only the values 0 and 1.

Proof. Note that µ(1) = 1. Let x ∈ X be such that µ(x) 6= 1. It sufficient to
show that µ(x) = 0. Assume that there exists a ∈ X such that 0 < µ(a) < 1.

Define a fuzzy set ν : X → [0, 1] by ν(x) :=
1

2
{µ(x) + µ(a)} for all x ∈ X. Then

clearly ν is well-defined. Let x, y ∈ X. Then

ν(x ∗ y) = 1

2
{µ(x ∗ y) + µ(a)}

=
1

2
µ(x ∗ y) + 1

2
µ(a)

≥ 1

2
min{µ(x), µ(y)}+ 1

2
µ(a)

= min{1
2
(µ(x) + µ(a)),

1

2
(µ(y) + µ(a))}

= min{ν(x), ν(y)},
which proves that ν is a fuzzy BE-algebra of X. Now we have

ν+(x) = ν(x) + 1− ν(1)

=
1

2
{µ(x) + µ(a)}+ 1− 1

2
{µ(1) + µ(a)}

=
1

2
{µ(x) + 1}

and so ν+(1) =
1

2
{µ(1) + 1} = 1. Hence ν+ is a normal fuzzy BE-algebra of X.

From ν+(a) > µ(a) it follows that µ is not maximal. This is a contradiction and
the proof is complete. ¤
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