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Abstract. In this manuscript, we formulate the notion of Ω(H, θ)-contraction
on a self mapping f : W → W , this contraction based on the concept of Ω-

distance mappings equipped on G-metric spaces together with the concept

of H-simulation functions and the class of Θ-functions, we employ our new
contraction to unify the existence and uniqueness of some new fixed point

results. Moreover, we formulate a numerical example and a significant ap-

plication to show the novelty of our results; our application is based on
the significant idea that the solution of an equation in a certain condition

is similar to the solution of a fixed point equation. We are utilizing this

idea to prove that the equation, under certain conditions, not only has a
solution as the Intermediate Value Theorem says but also that this solution

is unique.
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1. Introduction

Since then, this theorem has been generalized by many mathematicians in
two different ways for instance, some of them formulate spaces that are more
generalized, such as G-metric spaces, b-metric spaces, and Ω-distance mappings
for example see [2], [3], [5], [6], [8], [9] [10], [11], [13], [16], [17], [20], [21], [29].
The others generalized Banach Contraction, for examples [1], [4], [7], [8], [14],
[15], [16], [18], [19], [23], [24], [25], [26], [27], [28], [30]. w ∈ W is a fixed point of
a self function f on W if fw = w. Also, we call w ∈ W is a coincidence point of
the two self functions f1, f2 : W → W if f1w = f2w = ξ for some ξ ∈ W where
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the point ξ is called the point of coincidence. It is obviously that, if w = ξ, then
w is common fixed point of f1 and f2. or Introduction

2. Main results

Before we introduce our main result, it is necessary to introduce the following
definitions

Definition 2.1. Suppose (W,dG), equipped with Ω-distance mappings Ω. We
say that W is bounded with respect to Ω if there exists M > 0 such that
Ω(w,w

′
, w

′′
) ≤ M for w,w

′
, w

′′ ∈ W .

Definition 2.2. Suppose (W,dG), equipped with Ω-distance mappings Ω. We
called the self mapping f : W → W is a Ω(H, θ)-contraction if there existH ∈ H,

θ ∈ Θ and λ ∈ [0, 1) such that for all w,w
′
, w

′′ ∈ W , we have:

1 ≤ H

(
θΩ(fw, fw

′
, fw

′′
), θλT (w,w

′
, w

′′
)

)
, (1)

where

T (w,w
′
, w

′′
) = max

{
Ω(w,w

′
, w

′′
),Ω(w, fw, fw),Ω(w

′
, fw

′
, fw

′
)

}
.

Lemma 2.3. If f is Ω(H, θ)- contraction, and w,w
′
, w

′′ ∈ W , then:

1. If 0 < T (w,w
′
, w

′′
), then Ω(fw, fw

′
, fw

′′
) < T (w,w

′
, w

′′
),

2. If T (w,w
′
, w

′′
) = 0, then Ω(fw, fw

′
, fw

′′
)=0.

Proof. Assume T (w,w
′
, w

′′
) > 0, then

1 ≤ H

(
θΩ(fw, fw

′
, fw

′′
), θλT (w,w

′
, w

′′
)

)
≤ θλT (w,w

′
,w

′′
)

θΩ(fw,fw′ ,fw′′ )
.

(2)

Since θ is non-decreasing. We get Ω(fw, fw
′
, fw

′′
) ≤ λT (w,w

′
, w

′′
). □

Proof. Let T (w,w
′
, w

′′
) = 0, then

1 ≤ θΩ(fw, fw
′
, fw

′′
)

≤ θλT (w,w
′
, w

′′
)

= 1.

(3)

This implies that Ω(fw, fw
′
, fw

′′
) = 0. □

Lemma 2.4. Suppose (W,dG), H ∈ H and Ωf be a Ω- distance on W . f :
W → W is called an Ω(H, θ)- contraction w.r.t H.
Then Ωf contains only one element.
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Proof. First, we claim that ∀u ∈ Ωf . Then Ω(u, u, u) = 0,

1 ≤ H

(
θΩ(fu, fu, fu), θλT (u, u, u)

)

≤ θλT (u, u, u)

θΩ(fu, fu, fu)

=
θλT (u, u, u)

θΩ(u, u, u)
.

(4)

This means that

θΩ(u, u, u) ≤ θλmax{Ω(u, u, u),Ω(u, fu, fu),Ω(u, fu, fu)}
= θλ{Ω(u, u, u)} where λ ∈ [0, 1).

(5)

Since the class Θ is non-decreasing functions so we have:

Ω(u, u, u) < Ω(u, u, u).

A contradiction. Thus, Ω(u, u, u) = 0.
Now, assume ∃ u, v ∈ Ωf s.t fu = u, fv = v, since f is Ω(H, θ)- contraction, we
have:

θΩ(u, u, v) = θΩ(fu, fu, fv)
≤ θλT (u, u, v)
= θλmax{Ω(u, u, v),Ω(u, fu, fu),Ω(u, fu, fu)}
= θλΩ(u, u, v).

(6)

Therefore Ω(u, u, v) < Ω(u, u, v),which is contradiction, hence Ω(u, u, v) = 0.
Since Ω(v, v, v) = 0 by taking into consideration the definition of Ω- distance
mapping condition 3, we have u=v. □

Theorem 2.5. Assume that (W,dG) is a complete and equipped with Ω-distance
mappings Ω and W is bounded w.r.t Ω. Assume ∃ H ∈ H, θ ∈ Θ and λ ∈ [0, 1)
such that the self mapping f : W → W is Ω(H, θ)- contraction.
If one of the following condition hold:

1- IF f is continuous,
2- ∀ u ∈ W if fu ̸= u, then inf{Ω(w, fw, u) : w ∈ W} > 0.

Then Ωf has only one element.

Proof. construct the sequence (wn), starting arbitrary by w0 and wn = fn(w0)
for n ∈ N
By using condition (1), we have

1 ≤ H

(
θΩ(fwn−1, fwm−1, fwm−1), θλT (wn−1, wm−1, wm−1)

)
(7)
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Now,

θΩ(wn, wm, wm)
= θΩ(fwn−1, fwm−1, fwm−1)
≤ θλT (wn−1, wm−1, wm−1)
= θλmax{Ω(wn−1, wm−1, wm−1),Ω(wn−1, wn, wn),Ω(wm−1, wm, wm)}.

(8)

Since the class Θ is non-decreasing functions so we have:

Ω(wn, wm, wm)

≤ λmax{Ω(wn−1, wm−1, wm−1),Ω(wn−1, wn, wn),Ω(wm−1, wm, wm)}. (9)

To prove that Ω(wm−1, wm, wm) ≤ Ω(wn−1, wn, wn) for m > n, choose m = n+k
for some k ∈ N, then

θΩ(wm−1, wm, wm)
= θΩ(wn+k−1, wn+k, wn+k)
≤ θλmax{Ω(wn+k−2, wn+k−1, wn+k−1),Ω(wn+k−1, wn+k, wn+k)}.

(10)

Therefore,

Ω(wn+k−1, wn+k, wn+k)
≤ λmax{Ω(wn+k−2, wn+k−1, wn+k−1),Ω(wn+k−1, wn+k, wn+k)}
= λΩ(wn+k−2, wn+k−1, wn+k−1)
≤ λ2Ω(wn+k−3, wn+k−2, wn+k−2)
...
≤ λkΩ(wn−1, wn, wn).

(11)

Thus,

Ω(wn, wm, wm) ≤ λmax{Ω(wn−1, wm−1, wm−1),Ω(wn−1, wn, wn)}, (12)

Ω(wn−1, wm−1, wm−1) ≤ λmax{Ω(wn−2, wm−2, wm−2),Ω(wn−2, wn−1, wn−1)}.
So,

Ω(wn, wm, wm)
≤ λmax{λmax{Ω(wn−2, wm−2, wm−2),Ω(wn−2, wn−1, wn−1)},Ω(wn−1, wn, wn)}
= λ2 max{Ω(wn−2, wm−2, wm−2),Ω(wn−2, wn−1, wn−1),Ω(wn−1, wn, wn)}
= λ2 max{Ω(wn−2, wm−2, wm−2),Ω(wn−2, wn−1, wn−1)}.

(13)
By induction, we get:

Ω(wn, wm, wm) ≤ λn max{Ω(w0, wm−n, wm−n),Ω(w0, w1, w1)}.

Since W is bounded w.r.t. Ω. Then ∃ M > 0, such that

Ω(wn, wm, wm) ≤ λnM.

Taking the limit as n → +∞, we get:

lim
n→∞

Ω(wn, wm, wm) = 0. (14)
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If n ≤ m ≤ l, then

θΩ(wn, wm, wl)
≤ θλmax{Ω(wn−1, wm−1, wl−1),Ω(wn−1, wn, wn),Ω(wm−1, wm, wm)}
= θλmax{Ω(wn−1, wm−1, wl−1),Ω(wn−1, wn, wn).

(15)

Thus,

Ω(wn, wm, wl) ≤ λmax{Ω(wn−1, wm−1, wl−1),Ω(wn−1, wn, wn).

Ω(wn−1, wm−1, wl−1)
≤ λmax{Ω(wn−2, wm−2, wl−2),Ω(wn−2, wn−1, wn−1),Ω(wm−2, wm−1, wm−1)}
= λmax{Ω(wn−2, wm−2, wl−2),Ω(wn−2, wn−1, wn−1)}.

(16)
So,

Ω(wn, wm, wl)
≤ λmax{λmax{Ω(wn−2, wm−2, wl−2),Ω(wn−2, wn−1, wn−1)},Ω(wn−1, wn, wn)}
≤ λ2 max{Ω(wn−2, wm−2, wl−2),Ω(wn−2, wn−1, wn−1)}.

(17)
By induction , we get:

Ω(wn, wm, wl) ≤ λn max{Ω(w0, wm−n, wl−n),Ω(w0, w1, w1)}.

Since W is bounded w.r.t. Ω. Then ∃ M > 0, such that

Ω(wn, wm, wl) ≤ λnM.

Taking the limit as n approach to infinity

lim
n→∞

Ω(wn, wm, wl) = 0.

Then (wn) is a G- Cauchy sequence since (W,dG) is complete. Then ∃ β ∈ W
such that wn → β.
- If f is a continuous function, then wn+1 = fwn

→ fβ = β.
- If f is any mapping, by utilizing the lower semi continuity of Ω, then

Ω(wn, wm, u) ≤ lim inf
p→∞

Ω(wn, wm, wp)

< ϵ.
(18)

Since fu ̸= u. We have for every ϵ > 0, we get

0 < inf{Ω(w, fw, u) : w ∈ W}
≤ inf{Ω(wn, wn+1, u) : n ∈ N}
< ϵ.

(19)

Which is a contraction.
Thus fu = u the uniqueness of u follows from lemma 2.1.
Which complete the prove. □
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Corollary 2.6. Assume (W,dG) is a complete and equipped with Ω-distance
mappings Ω and W is bounded with respect to Ω. Assume ∃ γ ∈ [0, 1) and self

mapping f : W → W satisfy the condition ∀ w,w
′
, w

′′ ∈ W , we have:

1 ≤ eγT (w,w
′
,w

′′
)−Ω(fw,fw

′
,fw′′).

If one of the following condition satisfy:

1- f is continuous mapping,
2- ∀ u ∈ W if fu ̸= u, then inf{Ω(w, fw, u) : w ∈ W} > 0.

Then Ωf has only one element.

Proof. Define H : [0,+∞)× [0,+∞) → [1,+∞) via H(w
′

w ) = (w
′
)λ

w ,
and θ : [0,+∞) → [1,+∞) via θ(w) = ew.
Now

1 ≤ eγT (w,w
′
,w

′′
)−Ω(fw,fw

′
,fw

′′
)

=
eγT (w,w

′
,w

′′
)

eΩ(fw,fw′ ,fw′′ )
.

(20)

If γ = λ2, then λ ∈ [0, 1), so

1 ≤ eλ
2T (w,w

′
,w

′′
)

eΩ(fw,fw′ ,fw′′ )

=
eλT (w,w

′
,w

′′
)λ

eΩ(fw,fw′ ,fw′′ )

= H

(
θΩ(fw, fw

′
, fw

′′
), θλT (w,w

′
, w

′′
)

)
.

(21)

□

Corollary 2.7. Assume (W,dG) is a complete and equipped with Ω-distance
mappings Ω and W is bounded with respect to Ω. Assume ∃ γ ∈ [0, 1) and self
mapping f : W → W satisfy the condition
∀ w,w

′
, w

′′ ∈ W , we have

Ω(fw, fw
′
, fw′′) ≤ γT (w,w

′
, w

′′
).

If one of the following condition satisfy:

1- f is continuous mapping,
2- ∀ u ∈ W if fu ̸= u, then inf{Ω(w, fw, u) : w ∈ W} > 0.

Then Ωf has only one element.

Proof. By using corollary 3.1, we have:

1 ≤ eγT (w,w
′
,w

′′
)−Ω(fw,fw

′
,fw

′′
) =

eλT (w,w
′
,w

′′
)λ

eΩ(fw,fw′ ,fw′′ )
. (22)
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So, we get:

eΩ(fw,fw
′
,fw

′′
) ≤ eλT (w,w

′
,w

′′
)λ .

Applying the logarithm on both side, we get:
Ω(fw, fw

′
, fw

′′
) ≤ λ2T (w,w

′
, w

′′
) = γT (w,w

′
, w

′′
). □

Example 2.8. Consider the following mapping:

fw = 1− wn

D + wn
, where n ∈ N and M > n.

Then Ωf consists of only one element on [0, 1].
To show this, let W = [0, 1] and define the following mappings:

H : [1,+∞)× [1,+∞) → R, θ : [0,+∞) → [1,+∞) by H(v1, v2) = 1+ ln

(
v2
v1

)
,

θ(v) = ev,∀v ∈ R respectively, then H ∈ H and θ ∈ Θ.

Also, define: dG : W ×W ×W → [0,+∞) via dG(w,w
′
, w

′
) = |w − w

′ |+ |w′ −
w

′′ |+ |w − w
′′ |, then (W,dG) is a complete G-metric space.

Furthermore, define Ω : W ×W ×W → [0,+∞) via Ω(w,w
′
, w

′′
) = |w − w

′ |+
|w − w

′′ |, Ω is a Ω-distance mapping.

Now, equip (W,dG) with Ω, for all w,w
′
, w

′ ∈ W , we have:

Ω(fw, fw
′
, fw

′′
)

= |fw − fw
′ |+ |f − fw

′′ |

= |1− (w)n

D + (w)n
− (1− (w′)n

D + (w′)n
)|+ |1− (w)n

D + (w)n
− (1− (w

′′
)n

D + (w′′)n
)|

≤ 1

D2

[
|(wn)(D + (w

′
)
n
)− (w

′
)n(D + wn)|

+|(wn)(D + (w
′′
)
n
)− (w

′])n(D + (w
′
)n)|

]

=
1

D

[
|(w)n − (w

′
)
n
|+ |wn − (w

′′
)
n
|
]

=
1

D

[
|(w)− (w

′
)|((w)n−1 + (w

′
)(w)

n−2
+ · · ·+ (w)(w

′
)
n−2

+ (w
′
)
n−1

)

+|(w)− (w
′′
)|(w)n−1 + (w

′′
)(w)n−2 + · · ·+ (w)(w

′′
)n−2 + (w

′′
)n−1)

]

≤ n

D
[|(w)− (w

′
)|+ |(w)− (w

′
)|]
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= λΩ(w,w
′
, w

′′
) with λ =

n

D

≤ λT (w,w
′
, w

′′
).

Now,

Ω(fw, fw
′
, fw

′′
) ≤ λT (w,w

′
, w

′′
),

iff

eΩ(fw,fw
′
,fw

′′
) ≤ e(λTw,w

′
,w

′′
),

iff

1 ≤ eλT (w,w
′
,w

′′
)

eΩ(fw,fw′ ,fw′′ )
,

iff

1 ≤ 1 + ln

(
eλT (w,w

′
,w

′′
)

eΩ(fw,fw′ ,fw′′ )

)
,

iff

1 ≤ H

(
θΩ(fw, fw

′
, fw

′′
, θλT (w,w

′
, w

′′
)

)
.

Hence, f satisfy the conditions of Ω(H, θ)-contraction.
Theorem 2.5 ensures that Ωf has only one element.

3. Application

In this application, we will prove that the following equation:

wn+1 +Dw +D = 0, where D > n and n ∈ N, (23)

has not only a solution in the unit interval [0, 1] as intermediate value theorem,
but also, the solution is unique.
To prove this, it is equivalent to prove that the following mapping has a unique
fixed point in the unit interval [0, 1].

f(w) = 1− wn

D + wn
, where D > n and n ∈ N.

Example 2.8 Ensures that f has a unique fixed point and so the equation 23 has
a unique solution.

Example 3.1. If n = 99 and D = 100 in Equation 3 by utilizing MATLAB
simulator we get that the fixed point of f is w = 0.97598925061853 and so, it is
the unique solution of the Equation 23.
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4. Conclusion

In this study, we unify some significant new fixed point results based on
our contraction namely, Ω(H, θ)-contraction. We formulated some numerical
examples and a significant application to show the novelty of our results. This
application based on the significant idea that the solution of a equation in a
certain conditions is typical to solution of fixed point equation. we utilized this
idea to prove that this equation not only has solution as the Intermediate value
Theorem says but also, this solution is unique.
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