• Title/Summary/Keyword: Mathematics Teaching

Search Result 2,178, Processing Time 0.02 seconds

Development and Analysis of Effect for Problem Solving Model of Student-based (학생중심의 문제해결 모형 개발 및 효과 분석)

  • Jung, Chan Sik;Roh, Eun Hwan
    • Education of Primary School Mathematics
    • /
    • v.17 no.1
    • /
    • pp.57-75
    • /
    • 2014
  • Problem Solving has been emphasized for recent decades, and many research case studies have been used to improve students' Problem Solving abilities. However, the gap of students' abilities can be easily shown after enrollment into school in spite of scholar's attempt to reduce students' level of differentiation. Besides, it is clear that teachers have been too readily assisting students' and not allowing them to acquire the process of Problem Solving, and this may be due to impatience. Therefore, students seem to show signs of the dependent tendency towards teachers and other materials. This tendency easily allows students' to depend on teaching resources without attempting any developmental mechanism of Problem Solving. The presupposition of this study is that every student must solve a problem without any assistance, and also this study is to provide new cognitive strategies for both teachers and students who want to solve their problems by themselves through the process of visible Problem Solving. After applying the student-based problem-solving model by this study, it was found to be effective. Therefore this will lead to the improvement of the Problem Solving and knowledge acquisition of students.

Analysis of Variables and Errors of the Combinatorial Problem (순열 조합 문장제의 문제 변인과 오류 분석)

  • Lee, Ji-Hyun;Lee, Jung-Yun;Choi, Young-Gi
    • School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.123-137
    • /
    • 2005
  • Elementary combinatorial problem may be classified into three different combinatorial models(selection, distribution, partition). The main goal of this research is to determine the effect of type of combinatorial operation and implicit combinatorial model on problem difficulty. We also classified errors in the understanding combinatorial problem into error of order, repetition, permutation with repetition, confusing the type of object and cell, partition. The analysis of variance of answers from 339 students showed the influence of the implicit combinatorial model and types of combinatorial operations. As a result of clinical interviews, we particularly noticed that some students were not able to transfer the definition of combinatorial operation when changing the problem to a different combinatorial model. Moreover, we have analysed textbooks, and we have found that the exercises in these textbooks don't have various types of problems. Therefore when organizing the teaching , it is necessary to pose various types of problems and to emphasize the transition of combinatorial problem into the different models.

  • PDF

Fostering Algebraic Reasoning Ability of Elementary School Students: Focused on the Exploration of the Associative Law in Multiplication (초등학교에서의 대수적 추론 능력 신장 방안 탐색 - 곱셈의 결합법칙 탐구에 관한 수업 사례 연구 -)

  • Choi, Ji-Young;Pang, Jeong-Suk
    • School Mathematics
    • /
    • v.13 no.4
    • /
    • pp.581-598
    • /
    • 2011
  • Given the growing agreement that algebra should be taught in the early stage of the curriculum, considerable studies have been conducted with regard to early algebra in the elementary school. However, there has been lack of research on how to organize mathematic lessons to develop of algebraic reasoning ability of the elementary school students. This research attempted to gain specific and practical information on effective algebraic teaching and learning in the elementary school. An exploratory qualitative case study was conducted to the fourth graders. This paper focused on the associative law of the multiplication. This paper showed what kinds of activities a teacher may organize following three steps: (a) focus on the properties of numbers and operations in specific situations, (b) discovery of the properties of numbers and operations with many examples, and (c) generalization of the properties of numbers and operations in arbitrary situations. Given the steps, this paper included an analysis on how the students developed their algebraic reasoning. This study provides implications on the important factors that lead to the development of algebraic reasoning ability for elementary students.

  • PDF

Instruction method for Quadratic Curve Based on Dynamic Visual Representation by applying GeoGebra (GeoGebra를 활용한 역동적인 시각적 표상에 기반한 이차곡선 지도 방안)

  • Yang, Seong-Hyun;Kang, Ok-Ki
    • School Mathematics
    • /
    • v.13 no.3
    • /
    • pp.447-468
    • /
    • 2011
  • For the instruction of units dealing with the conic section, the most important factor that we need to consider is the connections. In other words, the algebraic approach and the geometric approach should be instructed in parallel at the same time. In particular, for the students of low proficiency who are not good at algebraic operation, the geometric approach that employs visual representation, expressing the conic section's characteristic in a dynamic manner, is an important and effective method. For this, during this research, to suggest the importance of dynamic visual representation based on GeoGebra in teaching Quadratic Curve, we taught an experimental class that suggests the instruction method which maximizes the visual representation and analyzed changes in the representation of students by analyzing the part related to the unit of a parabola from units dealing with a conic section in the "Geometry and Vector" textbook and activity book.

  • PDF

Understanding of Degree and Radian by Measuring Arcs (호의 측도로 도(Degree)와 라디안 이해하기)

  • Choi, Eun Ah;Kang, Hyangim
    • School Mathematics
    • /
    • v.17 no.3
    • /
    • pp.447-467
    • /
    • 2015
  • The purpose of this study is to examine how the learning experience understanding degree and radian as the measurement of arc affects the conceptual understanding of radian and measuring angle. For this purpose, we investigated pre-service teachers' understanding about measurement of angle using a length of arc, and then conducted a teaching experiment with two middle school students. The results of analyzing pre-service teachers' and students' response are as follows. Students' experience interpreting the concept of degree into measurement of arc had a positive effect on understanding of radian and students' learning process in which they got measurement of angle as measurement of arc enabled conceptual understanding of 'linear measuring'. Also a circle context and a strategy dividing by arc operated as effective strategies for solving various problems about an angle. Finally, we confirmed that providing direct manipulative activities as a chance to explore relationships between an angle and arc measure can help students' conceptual understanding of measuring angle.

Analyzing Students' Works with Quantitative and Qualitative Graphs Using Two Frameworks of Covariational Reasoning (그래프 유형에 따른 두 공변 추론 수준 이론의 적용 및 비교)

  • Park, JongHee;Shin, Jaehong;Lee, Soo Jin;Ma, Minyoung
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.23-49
    • /
    • 2017
  • This study examined two current learning models for covariational reasoning(Carlson et al.(2002), Thompson, & Carlson(2017)), applied the models to teaching two $9^{th}$ grade students, and analyzed the results according to the types of graphs(a quantitative graph or qualitative graph). Results showed that the model of Thompson and Carlson(2017) was more useful than that of Carlson et al.(2002) in figuring out the students' levels in their quantitative graphing activities. Applying Carlson et al.(2002)'s model made it possible to classify levels of the students in their qualitative graphs. The results of this study suggest that not only quantitative understanding but also qualitative understanding is important in investigating students' covariational reasoning levels. The model of Thompson and Carlson(2017) reveals more various aspects in exploring students' levels of quantitative understanding, and the model of Carlson et al.(2002) revealing more of qualitative understanding.

Development and Application of a Multimedia Title for Geometry Learning (기하 학습을 위한 멀티미디어 타이틀의 개발과 적용)

  • Jo, Seong-Chuon;Chung, Jong-in
    • The Journal of Korean Association of Computer Education
    • /
    • v.4 no.1
    • /
    • pp.99-107
    • /
    • 2001
  • One of the main objects of geometry in mathematics education is to improve students' geometric intuition capability and logical reasoning capability based on them. A visual element related to intuition plays an important role in teaching and learning of geometry. Therefore, in this research, we focus on the development of multimedia title available to dynamic operation about visual elements and verify of effect of its application. This title for the learning of "the Pythagorean theorem and its practical use" in the third grade of middle school is designed and implemented by an authoring tool, Toolbook. And it enables learners to study mathematics individually and can be applied to the educational field, too. And we taught two groups, the applied group and the compared one of the second grade of middle school and surveyed Questions and evaluated study achievement. We calculated study achievement of two groups on t-test using SPSS. As the result, we knew that the applied group is higher than the compared one in the study achievement and provision of dynamic operation possibility on visual elements make students know very high learning effect and help improvement of intelligent capability.

  • PDF

Students' Understanding of the Derivative - Literature Review of English and Korean Publications - (학생들의 미분에 대한 이해에 관한 문헌 연구)

  • Park, Jung-Eun
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.2
    • /
    • pp.331-348
    • /
    • 2012
  • With a gradual increase in research on teaching and learning calculus, there have been various studies about students' thinking about the derivative. This paper reviews the results of the existing empirical studies published in Korean and English. These studies mainly have shown that how students think about the derivative is related to their understanding of the related concepts and the representations of the derivative. There are also recent studies that emphasize the importance of how students learn the derivative including different applications of the derivative in different disciplines. However, the current literature rarely addressed how students think about the derivative in terms of the language differences, e.g., in Korean and English. The different terms for the derivative at a point and the derivative of a function, which shows the relation between concepts, may be closely related to students' thinking of the derivative as a function. Future study on this topic may expand our understanding on the role language-specific terms play in students' learning of mathematical concepts.

  • PDF

A study on constructing a instructional sequence and content structure based on informal context of mathematical syllabus (비형식적 상황을 이용한 내용구조의 표현과 지도계열의 구성)

  • Shin, Hyun-Sung
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.3
    • /
    • pp.357-366
    • /
    • 2005
  • This Study suggests some ideas how we develop a network of content structure based on informal context and method how we decide a sequence of mathematical syllabus from those Structures. 10th grade students in the process conceptual development was observed and interviewed in 2 hour teaching and learning experiment. Three related characteristics of student's thought in structuring math. Content and sequencing it were investigated as follows : (a) the reasoning that they do reflective abstraction well(or do not well) in acquisition of conceptual knowledge. (b) the method that teacher can use resuits in (a) to organize the content structure. (c) the ways that teacher find the process knowledge in informal content structure. That is, this study investigated the way we, curriculum designer, can create well defined content structure and instructional sequence strongly based on the learners' understanding.

  • PDF

초등학교 수학과 교육과정에 근거한 도형영역 교수단위 추출 연구

  • Kim, Hyeon-Mi
    • Proceedings of the Korea Society of Elementary Mathematics Education
    • /
    • 2010.08a
    • /
    • pp.143-156
    • /
    • 2010
  • 사회가 변화함에 따라 수학교육과정도 변화를 거듭하고 있으며, 이러한 변화에 잘 대처하기 위해서 교사는 수학교육의 방향에 대한 깊이 있는 성찰과 함께 수학, 교육학, 심리학 등 수학교육과 관련된 학문에 대한 이해가 필요하다. 이러한 교사에 대한 시대적인 요구에 능동적으로 대처하는 방안으로 Wittmann(1984)은 수학교과의 특성상 변하지 않는 요소들을 교수단위(Teaching Units)라 하고, 수학교육을 통합시키는 개념으로 교수단위이론으로 제시하였다. 교수단위는 수학에서 가르쳐야 할 내용들을 목적, 자료, 활동, 배경 등의 4요소에 따라 작은 단위로 조직화한 것으로, 이를 통해 수학연구자나 교사는 가르쳐야 할 내용에 대한 구조적인 이해와 체계적인 조직화를 도모할 수 있게 되어 나아가 사회의 변화에 대응할 수 있게 된다. 본 연구에서는 2007년 개정 수학과 교육과정 도형영역의 교수단위를 학년별로 추출하고, 추출된 교수단위의 특징과 제목을 분석하였다. 이를 통해 교수단위가 수학교육과정연구에 어떻게 활용될 수 있는지 그 방안을 모색해 보았다. 도형영역의 교수단위(TU)는 특징과 제목에 따라 '개념알기형', '개념적용형', '관계알기형'의 세 유형으로 분류할 수 있다. 현재의 도형영역 교육과정은 대체로 개념알기형, 개념적용형, 관계알기형의 순으로 구성되어 있으며, 개념적용형이 개념알기형보다 조금 더 많다. 이는 도형영역 교육과정이 학습한 개념을 다양한 방법을 통해 여러 활동에 적용시켜 봄으로써 도형의 개념을 좀 더 명확하게 알게 되는 초등학생의 발달단계를 고려하여 구성되었음을 알 수 있다. 이러한 교수단위(TU)는 수업자가 도형학습주제에 맞게 수업을 재구성하거나 학생들의 수준에 맞는 수준별 맞춤자료를 제작할 때 유용하게 활용될 수 있으며, 더 나아가 수학연구자들이 새로운 교육과정을 수립하고자 할 때 기초자료로 활용될 수도 있을 것이다. 교수단위는 고정불변의 것이 아니고 계속 보완되고 진화될 수 있는 모델이다. 따라서 앞으로도 많은 수학연구자나 현장교사의 참여로 교수단위가 보다 더 체계적이고 조직적으로 연구되어야 한다. 또한 추출된 교수단위를 교사나 학생들이 보다 편리하게 활용할 수 있도록 컴퓨터용 소프트웨어로 개발하려는 후속 연구가 필요하다.

  • PDF