Analyzing Students' Works with Quantitative and Qualitative Graphs Using Two Frameworks of Covariational Reasoning

그래프 유형에 따른 두 공변 추론 수준 이론의 적용 및 비교

  • Park, JongHee (Graduate School, Korea National University of Education) ;
  • Shin, Jaehong (Korea National University of Education) ;
  • Lee, Soo Jin (Korea National University of Education) ;
  • Ma, Minyoung (Graduate School, Korea National University of Education)
  • Received : 2016.12.07
  • Accepted : 2017.01.27
  • Published : 2017.02.28

Abstract

This study examined two current learning models for covariational reasoning(Carlson et al.(2002), Thompson, & Carlson(2017)), applied the models to teaching two $9^{th}$ grade students, and analyzed the results according to the types of graphs(a quantitative graph or qualitative graph). Results showed that the model of Thompson and Carlson(2017) was more useful than that of Carlson et al.(2002) in figuring out the students' levels in their quantitative graphing activities. Applying Carlson et al.(2002)'s model made it possible to classify levels of the students in their qualitative graphs. The results of this study suggest that not only quantitative understanding but also qualitative understanding is important in investigating students' covariational reasoning levels. The model of Thompson and Carlson(2017) reveals more various aspects in exploring students' levels of quantitative understanding, and the model of Carlson et al.(2002) revealing more of qualitative understanding.

본 연구는 중학교 3학년 학생 2명을 대상으로 공변 추론 수준에 관련된 두 이론(Carlson et al.(2002), Thompson, & Carlson(2017))을 그래프 유형(양적 그래프, 질적 그래프)에 따라 분석하였다. 이에 대한 연구결과로 양적 그래프 과제에서 Thompson과 Carlson(2017)은 Carlson 외(2002)보다 학생의 수준을 세분화하였으며, 질적 그래프 과제에서 Thompson과 Carlson(2017)은 학생 수준을 범주화하기 어려웠지만, Carlson 외(2002)는 학생의 수준을 자세히 파악할 수 있었다. 이와 같은 연구결과는, 학생들의 공변 추론을 파악하는 데 있어 양에 따른 수치적 접근의 분석뿐만 아니라 두 양의 공변 양상을 비수치적으로 파악하는 질적 접근의 분석도 중요함을 시사하며, 또한 Thompson과 Carlson(2017)이 양에 따른 수치적 접근을 분석하는 데 있어 중요한 방법이며 Carlson외(2002)가 비수치적으로 파악하는 질적 접근을 분석하는 데 있어 중요한 방법임을 시사한다.

Keywords

References

  1. 교육부(2015). 수학과 교육과정. 교육부 고시 제2015-74호 [별책8].
  2. 김남희․나귀수․박경미․이경화․정영옥․홍진곤(2011). 수학교육과정과 교재연구, 서울: 경문사.
  3. 모성준(2013). 함수적 상황에서 중학교 1학년 학생들의 공변 수준에 관한 사례연구, 한국교원대학교 석사학위논문.
  4. 문혜선(2015). 함수적 상황과 그래프 사이의 번역활동에서 나타나는 고등학교 1학년 학생들의 특징분석-공변 추론 중심으로. 한국교원대학교 석사학위논문.
  5. 서창범(2016). 학생들의 공변 추론 수준에 따른 함수 문제해결의 특징. 한국교원대학교 석사학위논문.
  6. 신재홍.이중권(2009). 모의실험을 통한 두 예비교사의 공변 추론 이해에 관한 연구, 한국학교수학회논문집, 12(4), 453-472.
  7. Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958
  8. Castillo-Garsow, C. C. (2012). Continuous quantitative reasoning. In R. Mayes, R. Bonillia, L. L. Hatfield, & S. Belbase (Eds.), Quantitative reasoning: current state of understanding, WISDOMe Monographs (Vol. 2, pp. 55-73). Laramie, WY: University of Wyoming.
  9. Confrey, J. & Smith, E. (1994). Exponential functions, rate of change, and the multiplicative unit. Educational Studies in Mathematics, 26, 135-164. https://doi.org/10.1007/BF01273661
  10. Hattikudur, Shanta, Richard W. Prather, Pamela Asquith, Martha W. Alibali, & Eric J. Knuth (2012). Constructing graphical representations: Middle schoolers' intuitions and developing knowledge about slope and intercept. School Science & Mathematics, 112(4), 230–40. https://doi.org/10.1111/j.1949-8594.2012.00138.x
  11. Leinhardt, G., Zaslavsky, O., & Stein, M. M. (1990). Functions, graphs, and graphing: Tasks, learning and teaching. Review of Educational Research, 60, 1-64. https://doi.org/10.3102/00346543060001001
  12. Saldanha, L., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variation. In S. B. Berenson & W. N. Coulombe (Eds.), Proceedings of the annual meeting of the psychology of mathematics education - North America. Raleigh, NC: North Carolina State University.
  13. Thompson, P. W. (1993). qunatitive reasoning, complexity, and additive structure. Educational Studies in Mathematics, 25, 165-208. https://doi.org/10.1007/BF01273861
  14. Thompson, P. W. (1994a). Images of rate and operational understanding of the Fundamental Theorem of Calculus. Educational Studies in Mathematics, 26(2-3), 229-274. https://doi.org/10.1007/BF01273664
  15. Thompson, P. W. (1994b). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp.181-234). Albany, NY: SUNY Press.
  16. Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. Cahmberlain, & S. Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education, WISDOMe Monographs(Vol. 1, pp. 33-57). Laramie, WY: University of Wyoming.
  17. Thompson, P. W. (2016). Researching mathematical meanings for teaching. In English, L., & Kirshner, D. (Eds.), Handbook of international research in mathematics education (pp. 435-461). London: Taylor and Francis.
  18. Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). Reston, VA: National Council of Teachers of Mathematics.