비형식적 상황을 이용한 내용구조의 표현과 지도계열의 구성

신현성

이 연구는 교육과정의 엄격적으로 표기하지 않는 개념형성과정을 바탕으로 구조화하고, 여기서 교사가 지도할 내용의 개발을 구성하는데 그 목적으로 둔다. 이를 위해 연구진은 사인함수의 그래프에 대한 개념형성과정을 수업모델로 만드여 교실에서 수업을 실시하고 수업 중학생들의 모둠활동을 관찰했다. 또, 수업 후에는 인터뷰를 통해 개념형성과정에서 보인 상황을 찾기(인식), 사용된 사고전략, 효과적인 자료 및 학습 도구 등 학생들의 반응을 면밀히 기록했다. 이들 결과는 5인의 전문 집단에 의하여 분석되어 내용구조망(network)과 그 지도계열을 구성할 수 있었다. 이 연구는 학교현장에서 소홀히 되고 있는 개념교육에 구체적인 방법을 제시하고 있다.

주요 용어 : 구조화, 내용 구조, 아이디어 교환, 비형식적 상황

1. 연구배경

수학과 교육과정의 논의에서 내용의 구조화는 세수학의 관점, 학습자사고 구조관점, 상황 인지의 관점으로 발전되어 왔다. 초기에 이 과제는 수학적 개념원리, 범죄의 구조화와 진이 (Shavelson, 1974), 과제분석과 위계설정(Gagne, 1962) 및 기본구조의 분류(Bruner, 1966) 등으로 진행되었으며, 이후 피아제의 사고구조의 영향을 받아 비로소 부르바키(Bourbaki N, 1971)관점에서 벗어났다. 피아제(Piaget, Inhelder, 1960)는 삼각형의 각 문제에 대한 두 아동의 실험결과를 통하여 학습자의 사고구조를 설명했다.3)

구조의 형성은 체계의 부분적인 변화가 전체체계에 영향을 주는 관계를 형성하는 것이다. 더욱이 중 더 진보적인 구조화의 형태는 순간적인 자극에 영향을 받지 않는 사고를 말한다.

이러한 그의 구조이론을 수학적으로 구체화시킨 단즈(Dienes, 1971)는 수학적 개념형성을 주기적인 양식으로 이해하려 했고, 이러한 학습주기는 지식의 구조와 농동적인 학습자 사이의

1) 강원대학교 (hsshin@cc.kangwon.ac.kr)
2) 개념 형성과정에서 교사 또는 학습자가 행한 실험, 자유놀이, 실험활동 등도 포함한 상황을 의미한다.
3) 삼각형의 각 문제를 학습하고 있는 아이와 변동활동이며, 5세 반인 본과 제크의 프로토콜이다.
신현성

계획된 상호작용으로서 특별히 고안된 수학자료를 매개로 하여 수행한다고 보았다. 학습의 초기에는 학습자의 경험이 구체적 활동을 통하여 체계적으로 구조화하기 시작하는 단계이며, 이 후 구조간의 관계, 구조의 일반화, 추상의 수준 등으로 발전한다. 내용구조에 대한 지도 계열설정은 그의 구조이론과 밀접한 관련을 가진다. 이들 구조화에 대한 또 다른 시각은 프로이던탈에 의해 진행되었다.

- 비형식적인 지식, 형식적인 지식, 또는 이들 두 요인간의 관계
- 전이를 위한 규칙, 일반화, 수학적 지식의 형용
- 잠재능력 및 신념체계

그러나 카펜터(Carpenter, 1997)와 로مب박(Romberg, 1999)등은 이들은 역동적 과정으로 보고 이를 4-5가지로 세분했으며 주로 구성 및 상황인지의 관점으로 해석하려 했다.

지금까지 논의한 구조이론과 이해의 속성을 교수요목의 내용구조를 표현하고 그 지도 계열을 구성하는데 중요한 역할을 하여 후자의 두 가지를 교실에서 이용할 수 있게 구체적인 방법을 제시하는 것이 이 연구의 목적이기도 하다. 그동안 이들 두 문제는 두 가지 방향으로 연구되었는데, 하나는 정교처리모형에서 시도한 모델로 학습자의 내용구조를 단위로 표현하고 단위와 단위사이에 존재하는 여러 성질을 위계화한 것이다. 대표적인 연구로 그리노(Greeno, 1976)의 고품과 낙품의 위계를 도식화한 것을 들 수 있다. 다른 하나는 하트(Hart, 1994)의 초등학교의 수학내용에 대한 계열조직의 연구이다. 그녀의 계열구성을 수직 계열과 수평계열로 나누어서 가세의 위계를 다시 정리했으며, 수직계열보다 수평계열의 결정을 중요시하여 학습자의 성취도분석을 통해 수평계열을 결정하였다.

이와 같이 학습자의 이해과정을 분석하여 대역적 계열구성 또는 국소적 계열구성을 하는 연구는 교과서 지자나 또는 교실의 수학교사가 필요한 일이며 피아제로부터 부르니를 거쳐 스케프, 하트에 이르는 중요한 연구문제였다.

2. 연구문제

교실에서 교사는 수학자들이 제시한 수학적 구조를 알맞은 언어적 표현과 자료를 이용하여 학생들이 볼 수 있는 내용구조5로 변형한다. 이러한 내용구조는 대역적이고 또는 국소적 이든 학습자의 이해양식을 반영해야 하며, 여기에는 개념형성과정이 강조된다. 연구문제는

4) 그리노가 제시한 도식화를 구조망(network)이라고 하며 노드(node)를 정하고 이들 사이에 대상, 정의, 결과를 표시하여 노드간의 연결과 구조의 단순화를 했다.
5) 이 연구에서 내용구조는 수학적 구조를 교사(학습자)가 자신의 인지구조에 알맞게 도입하여 교과서 또는 학생활동기에서 추출한 형태의 구조를 말한다.
비형식적 상황을 이용한 내용구조의 표현과 지도개념의 구성

다음과 같다.

1) 내용구조를 표현할 수 있는 구조망6)를 제시할 수 있는가?
2) 잘 정리된 구조망에서 어떻게 계열성을 이끌어 내는가?

3. 연구방법 및 절차

1. 연구설계

파일럿 실험과 고등학교 수학교수들이 면담을 통해 개념형성 과정을 3단계로 정리하였다.

[그림 1] 비형식적 단계와 형식적 단계

물론 이 모델은 8차 아이시جما(ICME, 1996)의 인지·발달 도표에 의해서 논의된 도표주제
와 인지사회(NCTM, 1998)의 인지과정 논의에 기초를 둔 것으로 처음 두 단계의 구체적
표현방법을 우리나라 교실사정에 알맞게 정리한 것이다.

다음에는 3단계를 가장 잘 적용할 수 있는 개념으로 낙서함수 그래프를 선택하였고,
실현학교의 교사와 협의하여 비형식적 단계가 반영된 수업계획서 설명하였다. 실험 중에
는 분석할 자료의 수집을 위해 3가지 방법을 이용했다. 즉 체크리스트와 면담과 활동지로
서 각기 자료 분석의 용도가 달랐다. 특히, 개념활용에 관한 활동지 일부는 충분한 시간을
주기 위해 과제형태로 이용되었으며 실험집단의 중·하위 학습집단에게 면담의 기회를 많
이 주었다. 2차시의 실험이 진행하는 동안에 실험교사의 활동을 도와주는 2명의 연구원
이 배치되었고, 실험과정을 분석하는 대학원생이 5명의 전문교사가 조직이 되었다. 이들이
사용한 면담자료는 실험 전에 연구자가 작성하고 파일럿실험을 거친 현장문항으로 위의 4
단계의 학습활동이 잘 반영된 것이었다. 이후 자료 분석은 5명의 전문교사와 연구자 간의
활발한 토론을 통해 이루어졌다.

2. 표본, 면담 및 관찰지 구성

연구대상은 고등학교 10나의 삼각함수 그래프이기 때문에 ○○시에 있는 평준화 지역
의 대표적 인문계교과 30명씩을 표본으로 했고 성취도를 기준하여 상·중·하 학생이 고
르게 분포되어있는 학급을 택하였다. 면담 및 활동지(관찰지) 구성은 연구의 자작 어려운
과정이며 활동지는 두 종류의 세트를 준비하였다. 하나는 실험기간 중에 교사와 학생이
공동으로 사용하는 A세트와 실험이 끝난 후 면담을 위한 B세트로 구분한다. 모든 실험과
면담자료는 앞 4단계 중에서 주로 비형식적 과정을 중심히 반영했다.

6) 교수요목을 위계화하여 도식적으로 나타낸 모델을 의미한다.
3. 실험차시안

실험에 앞서 연구자와 실험 교사를 중심으로 잠재적인 내용구조를 완성하고 이 내용구조에 따른 교수요목의 계열을 완성하여 차시안으로 만들었다. 왜냐하면 이 연구의 핵심은 교사에 의하여 만들어진 내용구조를 학생들에게 전달하고, 이 개념형성과정에서 학생들이 보인 이해양식을 찾아내어 내용 구조를 수정하는 일이며, 이것이 완성되며 교수요목의 계열구성이 완성되기 때문이다.

이를 위해 면담과 관찰한 안에 들어있는 문항을 다음 조건에 맞게 만들었다.

- 1단계와 2단계에 속하는 비형식적 문항은 파일럿 실험을 거쳐 난이도와 학습자의 흥미를 고려하여 점진적이면서 형식적 문항 쪽으로 접근하는 문항군을 만든다.
- 각 문항군에서 문항들 사이에는 수학적인 밀착이 이루어진다.
- 각 문항군은 내용구조 속에 있는 수학내용의 이해수준에 알맞게 용어, 기호, 문제 상황을 설정한다.

이러한 자료는 차시안에 포함되는 것도 있고 면담용으로 분류한 것도 있다. 이와 같이 잠재적으로 결정한 차시안은 파일럿 실험을 거쳐 최종실험 차시안으로 확정되었다. 이 차시안은 개념형성 1, 2단계에서는 현행교과서에서 볼 수 없는 수업이지만 3, 4단계는 현행 교과서를 상당부분 수행했다. 삼각함수 그래프에 대한 파일럿 실험을 거쳐 최종 확정한 수업형태는 다음과 같다(강태성, 신현성, 2004).

<table>
<thead>
<tr>
<th>능이동산의 원형기구도입 또는 물레방아</th>
<th>단위원을 이용한 그래프 실험, 게임</th>
<th>파일럿그래프 그리기, 반영적 추상</th>
<th>교과서 정의읽기, 기호도입</th>
<th>실생활 활용문제 해결</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1단계)</td>
<td>(2단계)</td>
<td>(3, 4단계)</td>
<td>[그림 2] 단계별 수업형태</td>
<td></td>
</tr>
</tbody>
</table>

본 연구에서는 3,4단계 수업결과는 분석하지 않고, 1,2단계만 실험결과로 분석한다. 실험 교사는 연구진에서 만든 적의 수업형태를 충실히 따르고 수업에 참석한 2명의 연구요원은 체크리스트를 통해 학생들의 개념형성과정에서 보이는 활동을 기록했다. 그러나, 수업 중에는 학생들에게 면담이나 학생 활동지에 있는 내용을 확인하는 질문은 하지 않았다.

4. 결과분석

1. 비형식적 내용구조(이해양식)

개념적 지식을 강조하는 수업에서는 비형식적 구조를 중요시 한다는 실험이 이미 검증된 사실이며, 국민공통교육과정에서 일반목표의 심화과정에 이를 문서형태로 제시하고 있
비형식적 상황을 이용한 내용구조의 표현과 지도계열의 구성

다. 본 실험에서는 1,2단계에서 학생들이 보인 비형식적 구조를 몇 개의 과정으로 분류하였다.

• 동심원 개념을 통한 삼각비의 일관성 : 중학교 3학년에서 배운 삼각비의 값이 동심원에서 일관성을 가지는 사실을 확인한다.

• 상황을 이용한 단원원 설정 : 놈이공원의 회전(또는 롤레방야)에서 파워포인트로 좌표축, 단원원을 생성한다.

• 꼭지점이 좌표평면의 원점으로 직각삼각형 설정 : 파워포인트로 두 꼭지점 중 하나는 원점, 다른 하나는 단원원상의 동점 P로 표시한다.

• 좌표평면에서 라디안으로 표현된 \(\theta \)의 변화 : 라디안으로 나타낸 각 \(\theta \)가 1,2,3,4 상한에서 어떻게 변화하는지 조사한 다음에 일반각으로 표현이 되는 과정을 모둠별로 토의한다.

• 놀이를 통한 사인값 설정 : 단원원 상의 동점 P에서 \(x \)축까지의 거리를 모둠별로 경사하여, 중이로 오른 다음에 실판의 자표판에 이점을 붙이는 놀이다.

• 좌표평면에서 사인값 설정 : 단원원 상의 동점 P에서 사인값을 보여 주는 암표한 양의 값으로 놀이를 이해하지만, 3상한과 4상한에서는 음의 값으로 놀이를 이해한다.

• 파워포인트 구성 설정 : 파워포인트를 이용하여 모둠별로 표시한 중이 끝을 점으로 표시한 다음에 이들 점을 곡선으로 연결한다.

이들 과정을 교수요목으로 확장하는 것은 간단한 연구문제가 아니기 때문에 수업 중 학생들이 보인 비형식적 구조를 관찰한 체크리스트와 면담결과를 분석하였다. 그 결과 발견된 몇 가지 사실을 제시한다.

• 삼각비의 일관성 :

삼각비의 계산은 잘 이루어졌으나 동심원에서 사인값, 코사인값 등이 일정하다는 사실은 생소해졌으며, 거의 모든 학생들이 몇 번 계산을 통해 비로소 이를 인식하였다. 다음 우수학생 A의 대답이다.

학생 A : 웨 동심원에서 담은 직각삼각형을 그려 사인값, 코사인값을 확인하나요?

연구자 : 이 그림을 보라. 여러 개 담은 직각삼각형에서 사인값이 각각 다르다면 어떤 문제가 있을까요?

학생 A : 글쎄요...?

이와 같이 학생들이 삼각비 값의 일관성이 유지되지 않으면, 앞으로 배우게 되는 삼각 함수의 그래프에서 또는 이미 배운 삼각함수의 정리에서 어떠한 문제가 발생하는지 잘 모르다. 또, 교과서에서는 단원원만이 소개된 이유를 알기 힘들다.

• 단원원과 직각삼각형의 설정 :

높이공원의 회전(또는 롤레방야)에서 파워포인트로 좌표축과 단원원을 그려 넣는 과정을 관찰(또는 편담)했으며, 대부분 학생들이 이들 과정을 즐겼다. 다음은 우수학생 A와 비우수학생 B의 반응이다.

학생 B : 교과서에 있는 원이 어떻게 놈이공원에서 가져올 수 있나!

학생 A : 교과서에서 웨 동점 P라고 하는지 알겠어요. 사인값은 회전들에서 저기 두 점 사이의 거리겠지요.
신현성

모둠활동을 관찰해 보면 대부분 학생들이 교과서에 있는 단위원, 각θ, 사인값의 의미를 쉽게 이 상황에서 인식하고, 우리 주위에서 이들 개념이 살아있다는 것이 신기해한다.

라디안 표현과 사인값:

학생들은 각의 라디안 표현을 단순히 계산활동으로 생각하였는데, 라디안의 표현이 삼각함수를 정의하고 삼각함수의 그래프를 이해하는데 얼마나 중요한 활동인지 인식하지 못했다. 실험자 대부분은 계산활동의 한 방법으로 라디안을 다루는 것으로 인식하였으며, 라디안을 도입한 이유를 충분히 설명하지 못하였다. 현행교과서도 각각 라디안으로 고치는 계산활동을 지나치게 강조한 점이 있으며, 라디안 도입 이유는 설명이 충분하지 못하다.

이러한 관찰 이외에도 학생들은 모둠별로 상황설계를 할 수 있거나 상황인식을 잘못하였으며, 놀이 활동에서 가장 단순한 형태의 사고전략인 세기(Counting)를 자주 활용하였다. 모둠별로 계산기를 활용했기 때문에 각 모둠은 그들이 정한 θ에 대한 사인값은 계산기로 구했으며 개념형성과정에서 계산기는 자연스러운 도구로 학생들은 인식했다. 그러나 놀이활동을 사인값으로 추상화하는 반영적 활동에서는 우수학생이 좋은 반응을 보인 반면 비우수학생은 그렇지 못하였다. 이유는 교사(또는 활동자)의 발문을 이들 집단이 쉽게 받아
비형식적 상황을 이용한 내용구조의 표현과 지도계열의 구성

주지 못한 데 있었다. 이는 상황 또는 실험과정에서 그들의 활동을 추상화하는 능력이 취약하기 때문이다. 이들의 반영적 추상화가 약하다는 사실은 수학교사와 연담과정에서도 밝혀졌다. 삼각함수의 그래프에 대한 형식적 내용구조는 현행교과서의 구조와 거의 비슷하였기 때문에 여기서는 생략한다.

2. 계열 구성

구조망이 결정이 되면 지도계열을 정해야 하는데 이를 위해 각 노드를 순서적으로 늘어 놓아야한다. 학교에서는 교과서 분석을 통한 계열설정을 교사가 주로 사용한다. 하지만 학생들의 이해력이 낮은 경우는 그 실험은 그 의미가 적다. 이 연구는 하트가 도입한 성취도 분석법을 이용한 것으로 학습자들이 인터뷰하고, 그들이 자주 사용하는 사고 전략, 자료 및 학습도구, 상황맞기(인식) 등을 조사하여 계열구성에 사용했다. 이들 결과를 종합하면 다음과 같은 도식으로 나타낼 수 있다.

![그림 4] 비형식적 구조망과 형식적 구조망

5. 결론 및 토론

이 연구의 주 목록은 삼각함수(사인함수)의 개념적과정을 구조망으로 나타내고, 이를 명시적으로 계열구성을 하는데 있었다. 이에 대한 실험이 끝난 후 교실에서 교사가 알아야 할 몇 가지 사항이 부수적인 결론을 얻어졌다.

첫째는 개념적과정에서 학생들의 인지구조, 흥미, 관심 등에 알맞은 상황맞기 또는 상황인식이 필요하다는 것이다. 이 연구에서는 최종 능력증원에 있는 학생들을 신성하기까지 여러 조건(교명, 운동장의 원형등)을 고려했으나 학생들의 개념적과정에 반해가 되는 요소가 많았다. 이는 레이브(Lave, 1993)등이 말한 상황체의 이론을 보충해 줄 수 있는 발전이다.

둘째는 모둠활동을 통한 아이디어 교환은 개념적과정에서 반영적 활동을 자극한다는 것이다. 실험 중 관찰 또는 실험 후 인터뷰에서 반영적 활동이 잘 일어나지 않는 모둠이 발견되었는데, 한결같이 모둠 내 학생끼리 의사소통을 통한 아이디어 교환이 잘 이루어지지 않았다는 점이다. 반면 아이디어 교환이 활발한 팀에서는 쉽게 반영적 활동으로 이어
신현성

썼다.

학생 A: 줄이 막대가 1, 2 상황과 3,4 상황에 세워져 있을 때 어떻게 곡선이 만들어 질까?
학생 B: 막대를 생각하지 말고 막대의 끝점을 생각해보면, 선생님이 그런 것은 끝점을 연결한 것이지.
학생 A: 그러면 막대의 길이와 넓이는 필요가 없다는 말인가?
학생 C: 그래 순서대로 나타낸 점을 찍는 거야.
학생 A: 화면에서 선생님이 컴퓨터로 점을 연결하실 때, 이어진 곡선이 sinθ의 그 릿이란 말인가?
학생 D: 그래. 파워포인트에서 줄이 막대가 선분으로 변한다면에 이것들이 없어지고 곡선만 남아야.
학생 A: 맞다. 순서대로 나타내어진 점들을 연결하니까. 화면이 맞다.

이러한 자료는 상황인지에서 주장하는 의사소통의 역할을 일부 반영하는 것이다. 실제로 교실에서 삼각함수를 가르치는 경험에 있는 교사들은 학생들의 잘못된 생각을 고치는데 교사의 설명만으로는 이루어지지 않는다는 것을 지적했다.

셋째는 학교의 개념교육을 다시 고려해야한다는 점이다. 교실의 학생 수가 많다는 이유 때문에 교사의 일관적 설명, 활동지가 없는 교과서만의 자료제시 또는 파워포인트를 통한 활동적인 자료에 관계없이 학생들 O.H.P를 이용한 교실환경은 학습자의 개념형성을 발휘한다는 점이다.

그런데, 위의 세 가지 중에서 마지막은 실험이 진행 중이거나 실험 후의 인터뷰에서 종합적으로 정리한 것이다.

연구의 결과를 학교에서 어떻게 활용할까? 먼저 교사는 개념교육에서 비형식적 구조망 (network)을 찾아야 한다. 이 구조망에는 수업자료와 도구, 학습자사교전략, 검증된 상황장기 등이 표상되어야 한다. 다음으로 구조망에서 수직적 위계와 수평적 위계를 발견하고 지도계열의 구성을 이끌어야 한다.

참고문헌

Currents of mathematical thought, New York, Dover P. Inc.
University press.
Covell, K. (1971). Intellectual growth and understanding mathematics. Columbus, Ohio :
ERIC Information Analysis Center for Science and Mathematics Education.

364
Situated learning in Communities of practices in I. Resnick(eds) Perspectives on Socially Shared Cognition. Washington : APS.
A study on constructing a instructional sequence and content structure based on informal context of mathematical syllabus.

Shin, Hyun Sung

This Study suggests some ideas how we develop a network of content structure based on informal context and method how we decide a sequence of mathematical syllabus from those Structures.

10th grade students in the process conceptual development was observed and interviewed in 2 hour teaching and learning experiment. Three related characteristics of student’s thought in structuring math. Content and sequencing it were investigated as follows: (a) the reasoning that they do reflective abstraction well (or do not well) in acquisition of conceptual knowledge. (b) the method that teacher can use results in (a) to organize the content structure. (c) the ways that teacher find the process knowledge in informal content structure. That is, this study investigated the way we, curriculum designer, can create well defined content structure and instructional sequence strongly based on the learners’ understanding.

Key Words: Network, Structure of contents, Exchange of ideas, Informal situation

7) Kangwon University (hsshin@cc.kangwon.ac.kr)