• Title/Summary/Keyword: Mathematical knowledge in teaching

Search Result 324, Processing Time 0.022 seconds

A Study on Productive Struggle in Mathematics Problem Solving (수학적 문제해결에서 Productive Struggle(생산적인 애씀)에 관한 연구)

  • Kim, Somin
    • Journal of the Korean School Mathematics Society
    • /
    • v.22 no.3
    • /
    • pp.329-350
    • /
    • 2019
  • Productive struggle is a student's persevering effort to understand mathematical concepts and solve challenging problems that are not easily solved, but the problem can lead to curiosity. Productive struggle is a key component of students' learning mathematics with a conceptual understanding, and supporting it in learning mathematics is one of the most effective mathematics teaching practices. In comparison to research on students' productive struggles, there is little research on preservice mathematics teachers' productive struggles. Thus, this study focused on the productive struggles that preservice mathematics teachers face in solving a non-routine mathematics problem. Polya's four-step problem-solving process was used to analyze the collected data. Examples of preservice teachers' productive struggles were analyzed in terms of each stage of the problem-solving process. The analysis showed that limited prior knowledge of the preservice teachers caused productive struggle in the stages of understanding, planning, and carrying out, and it had a significant influence on the problem-solving process overall. Moreover, preservice teachers' experiences of the pleasure of learning by going through productive struggle in solving problems encouraged them to support the use of productive struggle for effective mathematics learning for students, in the future. Therefore, the study's results are expected to help preservice teachers develop their professional expertise by taking the opportunity to engage in learning mathematics through productive struggle.

A Study on the Definition of a Circumcenter and an Incenter of Triangle (삼각형의 외심, 내심의 정의에 관한 고찰)

  • Jun, Young-Bae;Kang, Jeong-Gi;Roh, Eun-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.355-375
    • /
    • 2011
  • This paper was designed for the purpose of helping the functional comprehension on the concept of a circumcenter and an incenter of triangle and offering the help for teaching-learning process on their definitions. We analysed the characteristic of the definition on a circumcenter and an incenter of triangle and studied the context, mean and purpose on the definition. The definition focusing on the construction is the definition stressed on the consistency of the concept through the fact that it is possible to draw figure of the concept. And this definition is the thing that consider the extend of the concept from triangle to polygon. Meanwhile this definition can be confused because the concept is not connected with the terminology. The definition focusing on the meaning is easy to memorize the concept because the concept is connected with the terminology but is difficult to search for the concept truth. And this definition is the thing that has the grounds on the occurrence but is taught in a made-knowledge. The definition focusing on both the construction and meaning is the definition that the starting point is vague in the logical proof process. We hope that the results are used to improve the understanding the concept of a circumcenter and an incenter of triangle in the field of mathematical education.

  • PDF

A Study on the Effects of Creative STEAM System Given by Center of Gravity Experiment (창의적 융합교육을 위한 무게중심 프로그램 개발과 적용사례 연구)

  • Kim, Su Geum;Ryu, Shi Kyu;Kim, Sun Bae
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.333-357
    • /
    • 2014
  • This study resulted from a study regarding creative STEAM System based upon an experiment with the center of gravity. The results of the study are constructed by a fusion of mathematics and physics, showing that they are the same as mathematical calculations. Also, students can find that center of gravity of an object is in equilibrium on a metal rod when the center of gravity exactly is placed on the rod. The fact that an experimental results are correspond to calculations can maximize the effectiveness of teaching. And also this study has the following effectiveness. First, the exact construction and calculations arouses good competition among students. Second, this experiment can give students a motivation for study and increase their thinking in classes because the theoretical background of center of gravity experiment is basically attributed to math and science classes in school. This study includes three different types of center-of-gravity experiments. One is a simple type of experiment in which center of gravity exists inside of an object. Another is a complicated one in which the center of gravity is also inside of an object. However, the third type is an experiment in where the center of gravity is outside of an object. Therefore, it gives students an opportunity to discuss how to confirm equilibrium on a metal rod when the object has its center of gravity outside. Having discussions in class will allow students to have a critical way of thinking. In addition, searching for a way to solve a problem will increase creativity of students as well. And the last type is finding the center of gravity of a big acrylic panel where multiple objects are on the panel. According to the survey and interview conducted by students who participated in this program, teaching based on creative STEAM system helps students to get a better understanding and more fast acquisition of knowledge. We can expect that a well-planned creative STEAM system through a continuous study will be both effective and efficient in educating critical and creative students.

  • PDF

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.