• Title/Summary/Keyword: Mathematical design

Search Result 2,129, Processing Time 0.027 seconds

An Investigation on the Mathematical Instruction Utilizing Performance Tasks according to the Backward Design (수학 교과에서의 수행과제를 활용한 수업 방안 탐색 -백워드 이론을 기반으로-)

  • Hwang, Hye Jeang;Park, Hyun Ju
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • The purpose of this study was to explore the possibility of mathematical instruction through performance task activities based on the The Backward Design, which was suggested at first by Wiggins & McTighe in 1998. The Design deals with a performance assessment task involving the whole objective and its entire content of a lesson. Based on the Backward Design, this study established the mathematical instructional materials, which deal with the concept of 'the sector' taught in middle school, with one large performance task including three small tasks. It is important that in the lesson students be guided to achieve the several learning goals by themselves through reasoning activities. For this purpose, a formal interview was carried out by the subject of three middle school mathematics teachers. As a result, in order to implement the instruction utilizing the performance tasks more efficiently in future, it is required that a large performance task should be selected or developed including the content or problem contexts to be relevant with the real-life challenging situations. In addition, to make students enhance reasoning skills, it is strongly requested that the tasks including the utilization of supplementary materials such as technological devices or manipulatives be dealt with in a lesson.

An Initial Contribution to the Development of a Design Theory of Mathematical Interests: The Case of Statistical Data Analysis

  • Cobb, Paul;Hodge, Lynn Liao
    • Communications of Mathematical Education
    • /
    • v.16
    • /
    • pp.1-65
    • /
    • 2003
  • The focus of this article is on the process of cultivating students' interests so that they come to view mathematics as an activity worthy of their engagement. We first define and operationalize the notion of interests, in the process developing a perspective in which they are seen to be generative, to evolve, and to be deeply cultural. We concretize this perspective by presenting an analysis of a classroom design experiment that documents both the process by which the students' interests evolved and the means by which these developments were supported. We then frame the analysis as a case in which to tease out the implications for a nascent design theory of mathematical interests and in doing so give particular attention to the issue of equity in students' access to significant mathematical ideas

  • PDF

VLSI Design Innovation in the Deep-Submicron Era

  • Imai, Masaharu;Takeuchi, Yoshinori
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.419-420
    • /
    • 2000
  • This paper describes the innovation of VLSI design methodology in the coming decade. Technology trend of VLSI fabrication is surveyed first. Then the so-called “design crisis” is analyzed. Finally, possible design methodology to overcome the design crisis is discussed.

  • PDF

Development of Mathematical Task Analytic Framework: Proactive and Reactive Features

  • Sheunghyun, Yeo;Jung, Colen;Na Young, Kwon;Hoyun, Cho;Jinho, Kim;Woong, Lim
    • Research in Mathematical Education
    • /
    • v.25 no.4
    • /
    • pp.285-309
    • /
    • 2022
  • A large body of previous studies investigated mathematical tasks by analyzing the design process prior to lessons or textbooks. While researchers have revealed the significant roles of mathematical tasks within written curricular, there has been a call for studies about how mathematical tasks are implemented or what is experienced and learned by students as enacted curriculum. This article proposes a mathematical task analytic framework based on a holistic definition of tasks encompassing both written tasks and the process of task enactment. We synthesized the features of the mathematical tasks and developed a task analytic framework with multiple dimensions: breadth, depth, bridging, openness, and interaction. We also applied the scoring rubric to analyze three multiplication tasks to illustrate the framework by its five dimensions. We illustrate how a series of tasks are analyzed through the framework when students are engaged in multiplicative thinking. The framework can provide important information about the qualities of planned tasks for mathematics instruction (proactive) and the qualities of implemented tasks during instruction (reactive). This framework will be beneficial for curriculum designers to design rich tasks with more careful consideration of how each feature of the tasks would be attained and for teachers to transform mathematical tasks with the provision of meaningful learning activities into implementation.

SUFFICIENT CONDITIONS AND CONSTRUCTION OF SYMMETRIC BIBD

  • KANG, SUNGKWON;JUNG, YOON-TAE;LEE, JU-HYUN
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.109-119
    • /
    • 2002
  • Some sufficient conditions on the existence and uniqueness of certain symmetric balanced incomplete block design are introduced. Also, a construction algorithm for the design and some examples are presented. The algorithm is developed based on the construction of subspaces of the three-dimensional vector space over a field.

  • PDF

A Study on the Design and Implementation of Mathematics and Science Integrated Instruction (수학과학통합교육의 설계 및 실행에 대한 연구)

  • Lee, Hei-Sook;Rim, Hae-Mee;Moon, Jong-Eun
    • The Mathematical Education
    • /
    • v.49 no.2
    • /
    • pp.175-198
    • /
    • 2010
  • To understand natural or social phenomena, we need various information, knowledge, and thought skills. In this context, mathematics and sciences provide us with excellent tools for that purpose. This explains the reasons why there is always significant emphasis on mathematics and sciences in school education; some of the general goals in school education today are to illustrate physical phenomena with mathematical tools based on scientific consideration, to encourage students understand the mathematical concepts implied in the phenomena, and provide them with ability to apply what they learned to the real world problems. For the mentioned goals, we extract six fundamental principles for the integrated mathematics and science education (IMSE) from literature review and suggest a instructional design model. This model forms a fundamental of a case study we performed to which the IMSE was applied and tested to collect insights for design and practice. The case study was done for 10 students (2 female students, 8 male ones) at a coeducational high school in Seoul, the first semester 2009. Educational tools including graphic calculator(Voyage200) and motion detector (CBR) were utilized in the class. The analysis result for the class show that the students have successfully developed various mathematical concepts including the rate of change, the instantaneous rate of change, and derivatives based on the physical concepts like velocity, accelerate, etc. In the class, they described the physical phenomena with mathematical expressions and understood the motion of objects based on the idea of derivatives. From this result, we conclude that the IMSE builds integrated knowledge for the students in a positive way.

Exploring Teachers' Pedagogical Design Capacity: How Mathematics Teachers Plan and Design Their Mathematics Lessons (수업지도안 분석을 통한 수학교사의 수업설계역량(Pedagogical Design Capacity) 탐색)

  • Kim, Gooyeon;Jeon, MiHyun
    • The Mathematical Education
    • /
    • v.56 no.4
    • /
    • pp.365-385
    • /
    • 2017
  • This study aims to explore mathematics teachers' pedagogical design capacity. For this purpose, we googled and collected 327 lesson plans for middle-school mathematics and investigated how mathematics teachers plan and design their mathematics lessons through the format and structures, objectives and mathematical tasks, anticipation for students' thinking, and assessment and technology use. The findings from the data analysis suggest as follows: a) all the lesson plans are structured in a very similar way; b) the lesson plans seem to be based on the textbooks exclusively, that is, the mathematical tasks and flow is strictly followed and kept in the lesson plans in the way the textbooks suggested; c) the lesson plans do not include any evidence of what teachers anticipate for students' thinking and would do to resolve the students' issues; and d) the lesson plans do not contain any specific plans to assess students' thinking processes and reasoning qualitatively, and not intend to use technology in order to promote effective teaching and meaningful understanding.

Comparison of MDO Methodologies With Mathematical Examples (수학예제를 이용한 다분야통합최적설계 방법론의 비교)

  • Yi S.I.;Park G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.822-827
    • /
    • 2005
  • Recently engineering systems problems become quite large and complicated. For those problems, design requirements are fairly complex. It is not easy to design such systems by considering only one discipline. Therefore, we need a design methodology that can consider various disciplines. Multidisciplinary Design Optimization (MDO) is an emerging optimization method to include multiple disciplines. So far, about seven MDO methodologies have been proposed for MDO. They are Multidisciplinary Feasible (MDF), Individual Feasible (IDF), All-at-Once (AAO), Concurrent Subspace Optimization (CSSO), Collaborative Optimization (CO), Bi-Level Integrated System Synthesis (BLISS) and Multidisciplinary Optimization Based on Independent Subspaces (MDOIS). In this research, the performances of the methods are evaluated and compared. Practical engineering problems may not be appropriate for fairness. Therefore, mathematical problems are developed for the comparison. Conditions for fair comparison are defined and the mathematical problems are defined based on the conditions. All the methods are coded and the performances of the methods are compared qualitatively as well as quantitatively.

  • PDF

Test in Algorithm Design and Logics for Competition of Talented Children

  • Bilousova, Lyudmila I.;Kolgatin, Oleksandr G.
    • Research in Mathematical Education
    • /
    • v.12 no.1
    • /
    • pp.27-37
    • /
    • 2008
  • A test as a form of diagnostic of algorithm and logic abilities is considered. Such test for measuring abilities and achievements of talented children has been designed and used at the Kharkiv Regional Olympiad in Informatics. Quality of the test and its items is analyzed. Correlation between the test results of children and their success in creating mathematical models, designing of complicated algorithms and translating these algorithms into computer programs is discussed.

  • PDF

A-OPTIMAL CHEMICAL BALANCE WEIGHING DESIGN WITH CORRELATED ERRORS

  • Ceranka, Bronislaw;Graczyk, Malgorzata
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.143-150
    • /
    • 2004
  • In this paper we study the estimation problem of individual weights of objects using an A-optimal chemical balance weighing design. We assume that in this model errors are correlated and they have the same variances. The lower bound of tr$(X'G^{-1}X)^{-1}$ is obtained and a necessary and sufficient condition for this lower bound to be attained is given. There is given new construction method of A-optimal chemical balance weighing design.