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Abstract 

 
A large body of previous studies investigated mathematical tasks by analyzing the design 

process prior to lessons or textbooks. While researchers have revealed the significant roles 

of mathematical tasks within written curricular, there has been a call for studies about how 

mathematical tasks are implemented or what is experienced and learned by students as 

enacted curriculum. This article proposes a mathematical task analytic framework based 

on a holistic definition of tasks encompassing both written tasks and the process of task 

enactment. We synthesized the features of the mathematical tasks and developed a task 

analytic framework with multiple dimensions: breadth, depth, bridging, openness, and 

interaction. We also applied the scoring rubric to analyze three multiplication tasks to 

illustrate the framework by its five dimensions. We illustrate how a series of tasks are 

analyzed through the framework when students are engaged in multiplicative thinking. The 

framework can provide important information about the qualities of planned tasks for 

mathematics instruction (proactive) and the qualities of implemented tasks during 

instruction (reactive). This framework will be beneficial for curriculum designers to design 

rich tasks with more careful consideration of how each feature of the tasks would be 

attained and for teachers to transform mathematical tasks with the provision of meaningful 

learning activities into implementation. 

 

Keywords cognitive complexity, mathematical tasks, task analytic framework, task 

features 
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I. INTRODUCTION  
 

As the standpoint of teaching and learning mathematics has been changed from 

static and passive to dynamic and active, research has focused more on the use of 

mathematical tasks that engage students in a process of meaning-making when solving 

them through discussion (Jäder et al., 2017; Romberg, 1994; Ruthven et al., 2009; 

Schoenfeld, 1992). However, tasks are often considered as only static and written problems 

in textbooks or instruction materials. Although this approach is beneficial of preservice or 

novice teachers in developing their expertise to identify and develop effective tasks (e.g., 

König et al., 2020), it is unclear to what extent students have actually the opportunity to 

learn mathematics with relation to mathematical tasks and how much the tasks can achieve 

their targeted (even beyond) learning goals (Francisco & Maher, 2011; Schmidt et al., 1997; 

Wijaya et al., 2015). In order for students to develop their conceptual understanding and 

mathematical thinking as active learners, researchers argue that written mathematical tasks 

should be combined with meaningful and worthwhile mathematical activities through the 

whole processes of task enactment (Horoks & Robert, 2007; Simon et al., 2016). 

A large body of previous studies investigated mathematical tasks by analyzing the 

design process prior to lessons (e.g., Liljedahl et al., 2007) and printed textbooks (e.g., Son, 

2012). While research revealed the significant roles of mathematical tasks within intended 

curriculum (e.g., the national or state level standards or guidelines) or written curriculum 

(e.g., adopted textbooks by districts or schools), there has been a call for studies about how 

mathematical tasks are implemented or what is experienced and learned by students as 

enacted curriculum (Remillard, 2005; Tarr et al., 2006; Watson & Ohtani, 2015). For 

instance, Boston (2012) suggested a toolkit for analyzing instructional quality of 

mathematics to assess the nature and characteristics of classroom instruction. The toolkit 

provided a rubric to assess cognitive demands of mathematical tasks in consideration of the 

potential and actual engagement of students in the tasks. 

Researchers have examined the importance of mathematical tasks related to 

multiple aspects of the development of student's mathematical thinking and dispositions 

including high-ordered thinking (Hiebert & Wearne, 1993), mathematical justifications and 

reasoning (Arbaugh & Brown, 2005), and motivation (Clarke & Roche, 2018). In the same 

vein, the National Council of Teachers of Mathematics (NCTM) has consistently 

emphasized the importance of rich tasks, as stated that “effective teaching of mathematics 

engages students in solving and discussing tasks that promote mathematical reasoning and 

problem-solving and allow multiple entry points and varied solution strategies” (2014, p. 

17). For example, tasks with a high level of cognitive demand can impact the way students 

interact with mathematical content to build their understanding through the whole problem-

solving process (Stein & Smith, 1998).  

Although the cognitive complexity in mathematical tasks plays a critical role in 

providing students the opportunity to learn, the engagement of high-leverage mathematical 

thinking depends on other multiple features of tasks and other classroom-based factors 

(Stein et al., 1996). Previous studies have shown the fundamental task features such as 

multiple representations (Fan & Zhu, 2007), multiple solution strategies (Jitendra et al., 
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2007), and mathematical discourse (Stein et al., 2009). Other studies have also explored 

various factors related to the enactment of tasks: students' prior knowledge (Stillman, 2000), 

teacher knowledge (Charalambous, 2010), belief (Raymond, 1997), curricular materials 

(Tarr et al., 2008), and professional development (Polly, 2015). Although research 

examined and revealed the rich relationship between mathematical tasks and various 

features or factors, there are little studies on the various features of tasks that emerge 

through the enactment of tasks and how those tasks features are attained by students. While 

most studies emphasize the features of static tasks prior to the enactment, few studies pay 

attention to how these various features of mathematical tasks are launched and managed 

during lessons. Furthermore, much less studies have explored how the features influence 

what is learned or performed by students.  

Taken together, this study is situated in the process of task enactment from 

planning to implementation and proposes a task centric framework to analyze the assigned 

and enacted mathematical tasks. Therefore, in the present study, mathematical tasks include 

not only the potentials of assigned tasks but also mathematical activities that provide 

opportunities to develop students’ mathematical thinking from holistic perspectives 

(Boston, 2012; Boston & Candela, 2018). Acknowledging the importance of both static 

and dynamic features of tasks, it is paramount to examine the nature of tasks when 

implemented. In this study, we synthesize the multi-dimensional characteristics of 

mathematical tasks by considering how the characteristics of tasks are unfolded in the 

instructions and focusing on students’ engagement in learning through the tasks. In this 

paper, we aim (1) to propose a task analytic framework that addresses how the features of 

tasks are intended and attained in mathematical activities and (2) to illustrate classroom 

examples of using the framework to analyze a series of multiplication tasks. 

 

 

II. RELATED LITERATURE 

 

Mathematical Tasks 
Tasks potentially influence and structure the way students think and broaden (or 

limit) their views of the subject matter with which they are engaged (Carpenter et al., 1997). 

Mathematical tasks provide students opportunities for conceptual thinking and encourage 

them to make connections between specific mathematical ideas through deeper 

understanding about mathematical concepts, processes, and relationships (Stein et al., 

2009). However, it is questionable whether every mathematical task gives the same level 

of opportunity for students to learn high-quality mathematics (Hiebert et al., 1996; Stein et 

al., 2009).  

Doyle (1988) argues that tasks are assigned by teachers and devoted to developing 

students’ understanding and practices. He defines task with four aspects of work in a 

classroom: “(a) a goal state or end product to be achieved; (b) a problem space or set of 

conditions and resources available to accomplish the tasks; (c) the operations involved in 

assembling and using resources to reach the goal state or generate the product; (d) the 

importance of the task in the overall work system of the class” (p. 169). The four aspects 
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are interconnected and have reciprocal relationships with each other. For example, if 

students are provided with more resources, the way to attain their goals would be easier.  

Above definitions of tasks are limited to the written tasks. However, mathematical 

tasks could be defined beyond such potentials. In fact, studies have used extensive 

definitions of mathematical tasks including students’ actual learning through the activities. 

For example, Horoks and Robert (2007) extended the definition of tasks that are considers 

not only as mathematical concepts to be learned at each moment of the class but also as the 

work done by students. Suppose a teacher facilitates classroom discussions and some new 

mathematical idea emerges from students’ dialogues. The teacher can develop this idea as 

a task even though it was not originally intended (Kim, 2014). 

As researchers have shown that students’ mathematical ideas through tasks 

implementation play a significant role in measuring the quality of mathematical tasks 

(Arbaugh & Brown, 2005; Boston, 2012; Crespo, 2003; Norton & Kastberg, 2012), the 

value of tasks can be measured by the extent which students are engaged in solving the 

given tasks. In this study, we do not limit mathematical tasks to assigned or written 

mathematical problems. Assigned mathematical tasks themselves can exert the potential 

when enacted by teachers and engaged by students. Therefore, we encompass the potentials 

of assigned tasks and the attainments of mathematical activities that provide opportunities 

to develop students’ mathematical thinking in various situations in this study. Based on 

such a holistic definition of tasks, it is needed to re-identify characteristics of mathematical 

tasks considering how such characteristics develop students’ mathematical thinking. 

 

Change of Perspectives on Mathematical Task  
This holistic perspective of mathematical tasks offers a dynamic view on tasks. 

Because mathematical tasks affect what students learn and how they think (Doyle, 1983), 

we consider the activities enacted by teachers and learners related to the tasks as a part of 

task implementation. As mentioned earlier, the original intentions of a task are difficult to 

be apart from implemented activities that comprise students' responses to the given task 

(Christiansen & Walther, 1986; Watson & Mason, 2007). At the same time, the tasks are 

not always implemented as intended. Even though teachers design a rich task to be able to 

elicit students’ mathematical thinking, it often ends up with a rote practice of skills. From 

the task centric perspective, this task can be interpreted as a worthwhile but unsuccessfully 

implemented task. Therefore, teachers have to be ready to use tasks pedagogically and keep 

in mind the various features for the implementation process. Although the shift of cognitive 

demand was investigated during the multiple phases of lesson implementation through a 

task centered framework (e.g., Boston & Smith, 2009), there is still the remaining question 

of how other features of mathematical tasks such as multiple strategies and communication 

can be enacted dynamically.  

As we take the definition of task in a holistic perspective, it is required to re-

consider the features of tasks considering both planned and implemented task 

characteristics. We identify two distinct features of mathematical tasks: proactive and 

reactive. The proactive features of task refer to “addressing specifically the initial 

formulation of the [task] design” (Watson & Ohtani, 2015, p. 28). When teachers design 
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(or select) a mathematical task, they should consider underlying mathematical content 

knowledge and students’ cognitive engagement, mathematical understanding and 

reasoning, and problem-solving (NCTM, 1991). For example, Yeh and her colleagues 

(2016) proposed the Juicy Tasks emphasizing how meaningful and worthwhile a 

mathematical task can be, by connecting it to important mathematical learning goals, 

multiple entry points, and relevant situations in selecting and adapting the task. On the 

other hand, the reactive features focus on “attention on the process by which a designed 

sequence is integrated into the classroom environment, subsequently refined, and then 

theorized about” (Watson & Ohtani, 2015, p. 28). Teachers should consider the tasks that 

draw students’ different prior knowledge and the classroom ecology, then develop a wide 

spectrum of their mathematical knowledge and skills. This is because the value of tasks can 

vary depending on current students’ abilities and interactions during the implementation 

under the unique classroom situations. For example, Giménez and his colleagues (2013) 

suggested Task Suitability Criteria with important mathematical concepts, cognitive 

suitability, interactions, adequate materials, mathematical dispositions, and even school 

political environments.  

The distinct views of task features might highlight only a partial nature of each 

perspective of tasks. Therefore, in this study, we focus on not only proactive features as 

potential of tasks (Baumert et al., 2010) but also the reactive features in the task enactment 

from a situated perspective that learners have the opportunity to acquire knowledge due to 

the interaction between them and the environment (Lave & Wenger, 1991). From this 

viewpoint, we can show to what extent the potential of tasks can be actually exerted through 

implementations.  

 

Development of the Task Analytic Framework 
The motivation for developing a task analytic framework stemmed from the 

observations of classroom instructions in elementary schools. From our observations, we 

noticed teachers’ striving to improve the quality of their teaching. Due to the uniqueness 

of each classroom, there should be no absolute solution to improve a teacher’s instruction. 

However, how mathematical tasks are designed and how they are implemented by 

considering students’ knowledge and background are crucial for student learning across 

every classroom. Once we define mathematical tasks including assigned tasks and enacted 

tasks from the holistic perspective, we further need a modified version of the task 

framework. We first redefined the process of task enactment (Henningsen & Stein, 1997). 

Then, we developed a comprehensive analytic framework for mathematical instructional 

tasks (a.k.a., Mathematical Task Analytic Framework [MTAF]) that focuses on 

characterizing various features of mathematical tasks. To identify dimensions of the 

analytic framework, we synthesized previous literature about distinct features of tasks. In 

the following section, we describe the task enactment process and identify cross-cut 

dimensions and components for analyzing mathematical tasks from the holistic perspective.  

 

Intended to Enacted Mathematical Tasks  
To understand the transformative process of intended to enacted tasks, this study 
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modified a task enactment model suggested by Henningsen and Stein (1997). They 

proposed three distinct phases: (a) represented in instructional materials, (b) set-up by 

teachers, and (c) implemented by students. We revised the process with four distinct phases 

to expand the meaning of the task as the entire mathematical process of instructions: 

planned by teachers or developers, set-up by teachers and students, performed by teachers 

and students, and discussed by teachers and students (Figure 1). Prior to instructions, tasks 

are designed by teachers or textbook developers in written forms (Tasks as planned). At 

this phase, tasks are considered as mathematical interventions which have potential features 

and cognitive complexity. During the enactment process, instead of only teachers having 

an authority to set up mathematical tasks, we believe students might also contribute to 

create and launch tasks collaboratively with teachers or they could volunteer to create their 

own problem situations (Tasks as set-up). In the performing tasks phase, students carry out 

tasks using their own strategies with support from the teacher (Tasks as performed). In the 

final phase of the enactment of tasks, the teacher facilitates a discussion about students’ 

various solution strategies to develop their mathematical understanding (Tasks as 

discussed). Each phase of task enactment is a collection of interactive activities among 

students and teachers within tasks and activities. After the engagement in solving the tasks, 

individual students achieve mathematical learning outcomes (Achieved tasks). In this study, 

the proactive features of tasks are evaluated in the planning phase, while the reactive 

features are evaluated in the enactment phase (set-up, performed, and discussed).  

 

 
Figure 1. The Enactment Process of Mathematical Tasks (adapted from Henningsen and Stein,1997) 

Note. The shaded box represents the enactment process of mathematical tasks. 

 

We specified major dimensions of enactment process of mathematical tasks: the 

tasks features and cognitive complexity. The tasks features refer to “aspects of tasks that 

mathematics educators have identified as important considerations for the development of 

mathematical understanding, reasoning, and sense making” (Henningsen & Stein, 1997, pp. 

528-529). This dimension includes multiple solution strategies, multiple representations, 

and mathematical communication. Cognitive complexity refers to “the kind of thinking 

processes entailed in solving the task” (Stein et al., 1996, p. 461). These features will be 

detailed and exemplified in the later sections.  

 

Mathematical Task Analytic Framework 
As explained in the previous section, we extended our definition of mathematical 

tasks incorporating assigned tasks (Tasks as set-up) and enacted tasks (Tasks as performed 
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and discussed). This requires revision of the characteristics of mathematical tasks. Here, 

we propose MTAF (Table 1). Building on two dimensions of tasks (tasks features and 

cognitive complexity) by Henningsen and Stein (1997), we specified the dimensions of 

task enactment into five domains. Specifically, the cognitive domain was specified with 

breadth and depth of mathematical ideas and the task features were specified as bridging, 

openness, and interaction. This comprehensive framework is to guide, analyze, and reflect 

upon from the assignment to enactment of mathematical tasks. Compared to the previous 

task frameworks, The MATF is more comprehensive to analyze multi-facet characteristics 

of mathematical tasks and would provide a lens to analyze planned tasks for mathematics 

instruction (proactive) implemented tasks during instruction (reactive) at the same time.  

 
Table 1. Mathematical Task Analytic Framework 

Dimensions Components Description 

Breadth 

(National Research 

Council, 2001; Li, 

2000; Son & Senk, 

2010) 

Knowledge of 

Concepts 

Articulating mathematical concepts and under-

lying conceptual understanding  

Knowledge of 

Procedures 

Explaining routine procedures or invented 

strategies 

Depth 

(Stein et al., 1996; 

Stein et al., 2000) 

Memorization  Recalling facts or formulas  

Procedure without 

Connection  

Using procedures without connecting to under-

lying meanings  

Procedure with 
Connection 

Using procedure for deeper understanding of 
concepts  

Doing Mathematics Focusing on non-algorithmic thinking and 

exploring mathematics  

Bridging 

(Clarke & Roche, 

2018; Kisker et al., 

2012) 

Mathematical 

Connection 

Connecting other mathematical knowledge 

including students' prior knowledge  

Contextualization Connecting students’ interests and or 

contextualized experiences 

Openness 

(Watson & Ohtani, 

2015; Yeo, 2017) 

Multiple Entries  Providing open choices for essential information 

Multiple Strategies  Providing open choice for solution strategies 

Multiple Solutions Providing a chance to have different answers 

depending on problem conditions 

Interaction 

(Cohen et al., 2003; 

Herbst & Chazan, 

2012; Lampert, 2001) 

Teacher-Student  Communicating between a teacher and students 

to support and advanced mathematical thinking 

 Student-Student  Communicating between students to develop 

shared understanding 
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Breadth of Mathematical Ideas 
The breadth of the mathematical ideas indicates the types of mathematical 

knowledge students use when carrying out mathematical tasks. We synthesize cognitive 

expectation and mathematical proficiency (National Research Council, 2001; Li, 2000; Son 

& Senk, 2010) and categorize them into two components: knowledge of concepts and 

knowledge of procedures.  

Knowledge of concepts is about what and how students articulate underlying 

mathematical concepts and explain the meaning of a mathematical concept or operation 

without any computation. For example, suppose students are asked to explain the meaning 

of addition or multiplication. Note that this knowledge includes any conceptual 

understanding which makes relational understanding by connecting previous knowledge 

(Hiebert & Wearne, 1993). Knowledge of procedures regards students’ use of routine 

procedures or invented algorithms without justifying each step. For example, students 

might recall the addition algorithm of two-digit numbers by lining up two numbers and 

adding numbers that share the same place value.  

 

Depth of Mathematical Ideas 
Regarding the depth of mathematical ideas, we draw on the cognitive demand 

(Stein et al., 1996; Stein et al., 2000). Stein and her colleagues defined four levels of 

cognitive demand: memorization, procedures without connections, procedures with 

connections, and doing mathematics. Tasks that require a lower level of thinking and 

reasoning are described as memorization (reproduce previously learned facts and have no 

connection to the concepts or meaning that underlie the facts, rules, formulas, or definition 

being learned) or procedures without connections (use a procedure or algorithms without 

connecting mathematical concepts and have no connection to the concepts or meaning that 

underlie the procedure being used). In the meantime, a higher level of thinking imposes 

procedures with connections (meaningfully use a procedure connected with mathematical 

understandings or concepts and make connections among multiple representations helps to 

develop meaning) or doing mathematics (explore complicated and non-algorithmic 

pathways as solutions and require students to explore and understand the nature of 

mathematical concepts, processes, or relationships). Students would gain both conceptual 

and procedural knowledge through the higher-level tasks (Stein et al., 1996; Stein et al., 

2000). The depth with the level of cognitive demand is an important dimension when 

considering assigned and enacted tasks because it affects students’ exploration of 

mathematical concepts.  

 

Bridging 
Bridging is about connecting various mathematical knowledge or students' 

contexts. In this dimension, we consider mathematical connection and contextualization. 

Even though students work with the same task in the same classroom, their learning varies 

due to their different background such as prior knowledge and experience. Students’ prior 

mathematical knowledge, mathematical learning experiences, and connected other 

mathematical topics are important considerations in designing a rich task for students’ deep 
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understanding (NCTM, 2000). In addition, contextualized and authentic mathematical 

tasks engage students in more meaningful learning (Clarke & Roche, 2018). This 

contextual connection helps students make sense of the tasks authentically by connecting 

individual cultural backgrounds (in or out of classrooms) and access to targeted 

mathematical content (Civil & Andrade, 2002; Kisker et al., 2012).  

 

Openness 
The openness of a task is a key factor for successful problem-solving that students 

have their agency to develop various solution strategies and to discuss them, rather than 

drilling a particular solution (Watson & Ohtani, 2015). To provide multiple open choices 

to students, there are three subcategories of openness (Yeo, 2017): multiple entries, 

multiple strategies, and multiple solutions. Rich tasks make students look for multiple entry 

points, to use multiple pathways to solve them, and often to have more than one possible 

answer. (Drake et al., 2015). Multiple entry tasks provide open access to the same 

mathematics to all learners by adjusting the levels of cognitive difficulty. Mathematical 

tasks that make students use multiple strategies, enhance their ability to solve problems, to 

justify their statement, and to think mathematically by comparing various representations 

and strategies. Tasks that require students to create a situation to meet certain conditions 

entail multiple solutions. This type of task provokes students’ deeper understanding.  

 

Interaction 
In mathematics classrooms, discursive interactions occur between the teacher and 

his/her students and amongst students (Cohen et al., 2003; Herbst & Chazan, 2012; Lampert, 

2001). In other words, it should be noted the interactions that focused on the current study 

are not only teacher-student but also student-student conversations that concern the content 

of the subject domain. From task centric perspective, instructional tasks being enacted 

become the context of such interaction (Ni et al., 2014).  

Teacher-Student interaction refers to teachers’ dialogic efforts including 

questioning for in-the-moment responses, asking students mathematical meaning and 

justification to develop mathematical thinking (Kazemi & Stipek, 2009), and asking them 

to orient towards other students' mathematical ideas (Shaughnessy et al., 2021). This 

interaction can be initiated by a student’s posed questions as well. Student-Student 

interaction can be used to support what has been called as knowledge building by 

Scardamalia and Bereiter (2006) or a process that involves creative and sustained work 

with ideas. When building knowledge, students work collaboratively to improve shared 

ideas and to extend the frontiers of public knowledge.  

 

 

III. METHODS  

 

Context 
We used MTAF to assess a sequence of lessons that was implemented by a teacher-

researcher (one of the authors) in an elementary school in South Korea. The teacher taught 
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two days per a week in third-grade mathematics and the duration of each lesson was two 

consecutive class periods. Since the teacher had continuously demonstrated his effort in 

local schools to bridge between practices and theory (Kim, 2020; 2021), it was expected to 

draw fully the potentials of mathematical tasks through interactions with students. The 

third-grade elementary students who participated in this study consisted of 12 male and 12 

female students. The students were expected to have informal and formal knowledge about 

the multiplication based on previous learning opportunities or daily life experience. 

 

Mathematical Tasks  
In this paper, we examined the whole number multiplication tasks, “The Number 

of Students in Our School”. The goal of the tasks was to elicit students’ multiplicative 

reasoning when figuring out “a total number of students”. The tasks consisted of three 

phases (Table 2): (a) Task 1 in which students were to find the total number of grade 3 

students in their school (the number of students in each of three classes is fixed as 24), (b) 

Task 2 in which students were to find the total number of students from grades 1 to 3 in 

their school (the classroom size is different from class to class: either 23 or 24 students per 

class), and (c) Task 3 in which students were to find the number of total students in their 

own made-up schools (the classroom sizes are selected freely by the students).  

 

Table 2. The Number of Students in Our School Tasks 

Task 1 Task 2 Task 3 

How many students are in 

Grade 3? Please solve as 

many as possible strategies 

and explain how you solve 

the problem.  

Given information 

Grade 3: 24, 24, 24 

 

 

How many students are in 

Grade 1 to 3? Please solve 

as many as possible 

strategies and explain how 

you solve the problem.  

Given information 

Grade 1: 25, 24, 24 

Grade 2: 25, 24, 25 

Grade 3: 24, 24, 24 

How many students are in 

your imaginary school? 

Please explain how you 

solve the problem and 

exchange the problem with 

your peers.  

Given information 

The number of students 

varies. 

 

In Task 1, the teacher elicited necessary information to find the total number of 3rd 

grade students from their prior grade levels' experience. The elementary school being 

presented was a lab school which had 24 students (12 boys and 12 girls) in most classrooms 

and three classes at each grade level. The students were expected to find the total number 

of third grade students by using various ways such as addition (e.g., 24+24+24, 

20+4+20+4+20+4) or multiplication (e.g., 3 × 24). In Task 2, the instructor expanded the 

number of students to three grade levels (three classes per grade). Unlike 3rd grade, first 

grade and second grade did not have the unified number of students: In grade 1, there are 

25, 24, and 24 students; in grade 2, there are 25, 24, and 25 students, and in grade 3, there 

are 24, 24, and 24 students in each class. Due to two equal size of groups (24 and 25), the 

students were expected to use a wider spectrum of strategies such as repeated additions 

(e.g., 25 + 24 + 24 + 25 + 24 + 25 + 24 + 24 + 24), grouping numbers with multiplication 
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(e.g., 3 × 25 + 6 × 24), and decomposing and recomposing numbers (e.g., 9 × 24 + 3). 

Lastly, in Task 3, the students were asked to use only two numbers (e.g., 24 and 26) to 

make up their own schools with various classroom sizes of grades 1 to 3. This last phase 

gave students flexible opportunities to consider various mathematical strategies as well as 

solutions. It is notable that students were able to build their own problems in which the 

solutions could be different from everyone else. We found this series of tasks was effective 

to illustrate our developed framework because the features of each phase of the tasks are 

clearly diverse despite the same content orientation of multiplicative reasoning and the 

instructor used the same types of teaching practices across the lessons that might minimize 

the effect of the instructor.   

 

Data Source 
As the data sources, this study collected video recording of the lessons with two 

video cameras. One camera recorded the whole classroom from the front of the classroom 

and the other captured from the teacher’s perspective. The duration of each lesson was 

about 80 minutes and all video recordings were transcribed. In addition, we collected 

students’ written responses during the lessons as artifacts. 

 

Data Analysis 
Based on MTAF, we develop a scoring rubric to evaluate the quality of task (Table 

3). Raters, four authors except the instructor and the last author, assigned a score for each 

component of MTAF on a scale of 1-3. We set up intentional hierarchy for each dimension. 

To aim effective mathematical learning (NCTM, 2014), we stratified the quality of 

components with various combinations. Across rubrics, 3 refers to high-quality features, 2 

refers to medium-quality features of the component, and 1 refers to low-quality features or 

the absence of the component. To evaluate proactive features, the raters initially evaluate 

the potential of each written task prior to watching the recorded videos. Then, the four 

authors evaluated reactive features, by watching the recorded videos and finding evidence 

for each component of the rubric. During this iterative coding process, each rater coded 

individually first then consolidated any disparity to make consensus scores through 

discussions.  

Three lessons are not enough for quantitative analysis, but the goal of this study is not to 

generalize the use of the MTAF rubric. Instead, we qualitatively analyzed scores and 

provided specific examples from the lessons to describe how the MTAF can support 

effective implementation of mathematical tasks.  
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Table 3. Scoring Rubric for Task Enactment 

Dimensions Score Descriptions 

Breadth 

3 

2 

 

1 

Focusing on knowledge of various concepts and procedures.  

Focusing on either knowledge of concepts or knowledge of 

procedures. 

Focusing on a single concept or procedure. 

Depth 

3 

 

2 

1 

Focusing on non-algorithmic thinking and exploring 

mathematics.  

Using procedure for deeper understanding of concepts. 

Recalling facts or requiring algorithms.  

Bridging  

3 

 

2 

 

1 

Extending mathematical ideas and connecting individual 

cultural backgrounds. 

Extending mathematical ideas or connecting individual cultural 

backgrounds. 

Providing routine problems with superficial mathematical 

structures.  

Openness 

3 

 

2 

1 

Providing multiple entry points, strategies, and solutions 

altogether. 

Providing multiple entry points, strategies, or solutions. 

Providing none of entry points, strategies, and solutions. 

Interaction 

3 

 

2 

1 

Providing co-building knowledge through engaged participation 

and discussions. 

Providing guided discursive interactions by teachers. 

Providing teacher-centered interactions. 

 

 

IV. FINDINGS  
 

Table 4 shows MTAF scores for the three tasks. Overall, the reactive scores were 

higher than the proactive score, which indicates the features of mathematical tasks 

implemented by the teacher and students with higher quality than the original potentials. In 

addition, the later task showed better quality in both proactive and reactive dimensions. In 

the following section, we explain how the tasks are analyzed for each dimension and 

component of the framework, evidenced by the potential of the tasks and the teacher’s and 

students' actual responses from the recorded videos.  

 
Table 4. MTAF Scores for Each Task Enactment 

 Task 1 Task 2 Task 3 

Dimension Proactive Reactive Proactive Reactive Proactive Reactive 

Breadth 2 3 2 3 2 3 

Depth 2 1 2 2 3 3 

Bridging 1 2 1 2 3 3 

Openness 2 2 2 2 3 3 

Interaction 2 3 2 2 2 3 
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Breadth 

The three tasks were expected to elicit more procedure knowledge about repeated 

addition or multi-digit multiplication. For this reason, the scores for proactive features were 

2 (see Table 5). On the other hand, during implementation, students shared not only their 

conceptual knowledge such as the meaning of multiplication and properties of addition and 

multiplication (the bold fonts in Table 5) but also additional procedural knowledge about 

one-digit by one-digit multiplication. Thus, all reactive features score 3.  

 

Table 5. Breadth of Mathematical Idea  

 Breadth Task 1 Task 2 Task 3 

Proactive 

Knowledge 

of Concepts 

- - - 

Knowledge 

of 

Procedures  

One-digit and 

two-digit addition 

Two-digit by one-

digit 

multiplications 

Two-digit and three-

digit addition 

Two-digit by one-

digit multiplications  

Two-digit and 

three-digit addition 

Two-digit by one-

digit, two-digit by 

two-digit 

multiplications 

Reactive 

Knowledge 

of 

Concepts 

Multiplication as 

equal groups 

Commutative 

property of 

multiplication  

Multiplication as 

equal groups 

Commutative 

property of 

multiplication  

Commutative and 

associative property 

of addition 

Multiplication as 

equal groups 

Commutative 

property of 

multiplication 

Commutative and 

associative 

property of 

addition  

Knowledge 

of 

Procedures  

One-digit and 

two-digit addition 

Two-digit by one-

digit 

multiplications 

Two-digit and three-

digit addition 

One-digit by one-

digit multiplications 

Two-digit by one-

digit multiplications  

Two-digit and three-

digit addition 

One-digit by one-

digit 

multiplications 

Two-digit by one-

digit multiplications 

Two-digit by two-

digit multiplications 

Note that the bold font only appeared in the reactive analysis.  

 

In Task 1, many students employed standards algorithms for repeated addition of 

two-digit numbers or multiplication of one-digit by two-digit (Knowledge of Procedures) 

and some of them also explained the fundamental meaning of multiplication (“adding 24 

three times is equal to 3 times 24 or 3 groups of 24.”). In Task 2, the students were asked 

to figure out the total number of students in Grades 1 to 3. Recall that the number of 

students in each 3rd grade class is 24 equally in the previous task. In Task 2, however, the 

student numbers in the classes of Grades 1 and 2 were either 24 or 25. The students were 
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able to conceptualize clearly the meaning of multiplication as equal groups and explore 

some properties of multiplication such as commutative property (Knowledge of Concepts). 

Some students combined addition and multiplication (Knowledge of Procedure). For 

example, Hojun re-arranged the numbers of all nine classes as 24 × 3 + 24 × 3 + 25 × 3 = 

72 + 72 + 75 = 144 + 75 = 219 (Figure 2-left). Others used multi-step two-digit additions. 

For example, Siyoung decomposed 25 into 24 and 1 in her head. Then she calculated the 

sum of three 24s for each grade (24 + 24 + 24 =72 for each grade). Since there were three 

grades in each three classes, she added 72 three times (72 + 72 + 72 = 216). Because there 

were three classes of 25 students, she knew that there were three 1s left after using 24s 

from those three 25s. She added 3 to 216 and answered 219 as the total number of 1st to 

3rd graders (Figure 2-right).  

 

   
Figure 2. Hojun’s Multiplication Strategy (left) and Siyoung’s Addition Strategy (right) 

 

In Task 3, the students calculated the number of students by making up their own 

schools. Students demonstrated the components of Breadth more dynamically. Jiwoo, for 

an instance, created a table to present the number of students in her school problem (Figure 

3-left). When finding the total number of students, she decomposed each number by tens 

and ones (20 + 6 and 20 + 4). Because she made 5 classes in each 3 grades, there were total 

15 classes—11 classes with 26 students and 4 classes with 24 students. She calculated 20 

× 15 = 300, 6 × 11 = 66, and 4 × 4 = 16, then added the products to find the total number 

of students, 382 (Figure 3-right). Such strategy included various mathematical properties 

such as associative property of addition and commutative property of addition (Knowledge 

of Concepts). The task also elicited students’ Knowledge of Procedures. Some students 

used additions of two-digit (e.g., 90 + 90 + 90) or three-digit (e.g., 270 + 297) as well as 

multiplications of two-digit by two-digit (e.g., 20 × 15), two-digit by one-digit (e.g., 6 × 

11), and one-digit by one-digit (e.g., 4 × 4).  

 

      
Figure 3. Jiwoo’s Imaginary School (left) and Solution Strategy (Right) 

 

grade 
grade 
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Depth 
The three tasks were expected to follow the same procedure without connection as 

assigned tasks, which scores 1 (Table 6). However, the three tasks actually showed different 

levels of the depth of mathematical ideas during implementation.  

 
Table 6. Depth of Mathematical Idea 

 Depth Task 1 Task 2 Task 3 

Proactive 

Memorization 
Multiplication 

facts 

- - 

Procedure 

without 

Connection 

Repeated 

addition  

Multiplication 

algorithm 

Repeated addition  

Multiplication 

algorithm 

Repeated addition  

Multiplication 

algorithm 

Procedure with 

Connection 

- - - 

Doing 

Mathematics 

- - - 

Reactive 

Memorization 
Multiplication 

facts 

- - 

Procedure 

without 

Connection 

Repeated 

addition  

Multiplication 

algorithm 

  

Procedure with 

Connection 

- Understand the 

conception of 

multiplication 

with iterate #s to 

use 

- 

Doing 

Mathematics 

- - Non-

algorithmic, 

complex with 

diverse numbers, 

decide to choose 

appropriate #s 

Note that the bold font is only appeared in the reactive analysis.  

 

In Task 1, as an initial step for set-up, students began with recalling basic 

multiplication facts such as 2 × 3 and they were asked the meaning of this expressions, 

"Three groups of two1" (Memorization). Students often solved the launched task using 

standard algorithms of addition and multiplication. Shown in the other two phases, students 

had abilities to perform beyond standard algorithms such as decomposing two-digit 

numbers. However, the majority of the students simply used the algorithms in this phase. 

They had little opportunity to make connections between other representations or relevant 

                                                        
1 2 × 3 represents two groups of three in the US and other western countries, while it represents 

three groups of two in South Korea. 
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mathematical concepts (Procedure without Connection: score 1).  

In Task 2, students’ cognitive demand of the task increased, because the students 

reorganized two different numbers to make them easier to add or multiply. In doing this, 

the students focused on the concept of multiplication, identifying the number of classes 

with the same number of students as one factor (number of groups) and the number of 

students in the classrooms as the other factor (amount in each group) at the same time 

(Procedure with Connection: score 2).  

When posing a problem situation in Task 3, students bore in mind a multiplicative 

structure with two repeated numbers. This task further required students’ self-monitoring 

to manage structure with their own cognitive processes (Singer et al., 2017). The posed 

tasks were not predictable due to the nature of flexible number combinations and might be 

not easy to solve with only standardized ways. Therefore, students should understand how 

to use multiplication concepts and relationships between addition and multiplication in 

representing the context with mathematical expressions (Doing Mathematics: score 3).  

 

Bridging 

Table 7 below shows how the three tasks drew other mathematical topics including 

students’ prior mathematical knowledge and their situated context. Evaluating assigned 

tasks, Tasks 1 and 2 were considered as traditional routine story problems (score 1) and 

Task 3 was considered to be available to extend students’ prior knowledge (score 3). Since 

students had learned two-digit addition, one-digit multiplication, it was easy to anticipate 

they would use relevant arithmetic knowledge of procedures in the domain of Number and 

Operations. However, during implementation, the students utilized their informal 

knowledge of halving and decomposition. 

 
Table 7. Bridging to Prior Knowledge and Context During the Enactment of the Tasks 

 Bridging Task 1 Task 2 Task 3 

Proactive 

Mathematical 

Connection 

Addition  

Multiplication  

Addition  

Multiplication 

Addition  

Multiplication 

Contextualization  Routine problem  Routine problem Imaginary school 

Reactive 

Mathematical 

Connection 

Addition  

Multiplication  

Halving  

Addition  

Multiplication 

Decomposition 

Addition  

Multiplication 

Decomposition 

Contextualization  
Current grade 

level  

Current school  Imaginary school 

Note that the bold font is only appeared in the reactive analysis.  

 

To be specific, in Task 1, the students employed a halving strategy to decompose 

the given number 24 into 12 and 12. This strategy is shown only in this task. In the later 

tasks, students decomposed two-digit numbers into tens and ones (e.g., 20 + 4).  

Regarding contextualization, the first two tasks were situated in their own school 

setting, which the raters did not anticipate. The elementary school was affiliated with a 

regional college of education and students in the elementary school employed lottery for 
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entering and the total number of students should not exceed a certain amount of capacity. 

In addition, each classroom had a fixed number of students, 24 (12 boys and 12 girls) in 

Grade 3, but this fixed number was slightly varied in Grades 1 and 2. Because of the 

authenticity and relevance of the tasks, students were motivated and engaged in solving the 

problems. Students might not have considered asking this type of mathematical inquiry (i.e., 

the number of total students) within their context. Therefore, Bridging for the first two tasks 

scores 2. In Task 3, students are immersed in the task that they created. This posing new 

context stemmed from their own culture. When solving the problems posed by themselves, 

students were more actively engaged cognitively (score 3).  

 

Openness  
Interestingly, the dimension of openness showed the match scores for both 

proactive and reactive features. In the first two tasks, since the students used the designated 

numbers to carry out the tasks, they were expected to use specific information. There was 

not much room for the beginning and end of problem solving (see Table 8). In other words, 

the tasks during these first two tasks did not provide students opportunities for multiple 

entries or multiple solutions. Instead they were able to use multiple strategies including 

direct modeling, arithmetic operations (e.g., addition and multiplication), and regrouping. 

This is the reason why Tasks 1 and 2 scored 2 for both proactive and reactive features. 

 
Table 8. Openness During the Enactment of the Tasks 

 Openness Task 1 Task 2 Task 3 

Proactive 

Entries 
Same 

information 
Same information 

Different 

information  

Strategies Multiple ways Multiple ways Multiple ways 

Solutions Single answer Single answer Multiple answers 

Reactive 

Entries 
Same 

information 
Same information 

Different 

information  

Strategies Multiple ways Multiple ways Multiple ways 

Solutions Single answer Single answer Multiple answers 

 

Similarly, in Task 3, students generated the numbers of students for each 

classroom in several grades (different information). Some students had three classes, 

while others had five. Most students chose two-digit numbers (11 to 99) for the class sizes. 

In this phase, students developed diverse strategies even without the teacher’s directions 

or support. Giving students the authorship of the task, this phase yielded multiple 

conditions, strategies, and answers (score 3).  

 

Interaction  

As potential of the three tasks, we expected the tasks could be guided by the teacher 

for effective classroom discussions (Table 9). The teacher might support elicit foundational 

multiplication concepts (Task 1) or multiplicative thinking (Tasks 2 and 3). In addition, in 

Task 3, students were expected to exchange their posed problems. Therefore, all three tasks 
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scored 2 for proactive features.  

 
Table 9. Interactions in Teacher-Student or Student-Student During the Enactment of the Tasks 

 Interaction Task 1 Task 2 Task 3 

Proactive 

Teacher-

Student 

Supporting to 

elicit the 

conception of 

multiplication 

Comparing 

strategies 

Supporting and 

extending the 

multiplicative thinking 

Comparing strategies  

Supporting and 

extending the 

multiplicative 

thinking 

Comparing 

strategies 

Student-

Student 

- - Solving other’s 

posed problems 

Reactive 

Teacher-

Student 

Supporting to 

elicit the 

conception of 

multiplication 

Comparing 

strategies 

Unpacking 

procedures 

Supporting and 

extending the 

multiplicative 

thinking 

Comparing strategies  

Unpacking 

procedures 

Supporting and 

extending the 

multiplicative 

thinking 

Comparing 

strategies 

Student-

Student 

Questioning 

other’s 

strategies 

 

Questioning other’s 

strategies 

Questioning 

other’s strategies 

Solving other’s 

posed problems 

Note that the bold font is only appeared in the reactive analysis.  

 

During implementation, encouraging students to explain the meaning of 

multiplication and justify their thinking processes, the students were supported to elicit 

their multiplication conceptions and to develop multiplicative thinking through teacher-

student interaction. In Task 1, the students predominantly used either the standard 

algorithm of multiplication between two-digit and one-digit or repeated addition method. 

The first three students shared their solution strategies using the standard algorithm (Figure 

4). 

 

 
student 1 student 2 student 3 

Figure 4. Using Standard Algorithm for the Fixed Number Phases 
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Since two students presented the same procedure, 2 × 3 = 6 instead of 20 x 3 = 60, 

the teacher asked students to consider the meaning of 2 in 24 by emphasizing the place 

value. We observed the following interactions between teacher and students to request 

justification of their solution strategies.   

Student 1: 4 times 3 is 12 and 2 times 3 is 6. When you add 1 and 6, you get 7. 

Teacher: If you add 12 [from 4 × 3] and 6 [from 2 × 3], it would be 18, but you have 72 not 

17. Can you explain this? 

Students were constantly asked to compare their own strategies and solutions with 

other students’ and to understand them. Not only the teacher-student interaction, but 

student-student interaction was also prevalent throughout the lessons. The students often 

had opportunities to evaluate the validity of mathematical statements of their solution 

strategies through small or whole group discussion. For example, in Task 1, a student 

presented his halving strategy, 24 × 3 = (12 + 12) × 3 = 12 × 3 + 12 × 3 and another student 

inquired why the distributive property did not work for an addition situation. He restated 

his question: why (4 + 3) + 5 ≠ (4 + 5) + (3 + 5)? Without the teacher involved, other 

students jumped into this conversation and explained using some concrete examples. This 

was a significant moment that students could build and expand their mathematical 

knowledge through student-student interaction (score 3). We acknowledged that the nature 

of various interactions in mathematics instructions depends on facilitation by teachers, but 

the students could open up new entry points to access mathematical thinking during peer 

discussions. Furthermore, in Task 3, the students were engaged in other students’ invented 

problems and challenged by solving the problems using their own strategies (score 3).  

 

 

V. DISCUSSION  

 

Researchers have documented how mathematical tasks can impact the way 

students interact with mathematical content to build their understanding (Ni et al., 2014; 

Stein & Smith, 1998; Tekkumru-Kisa et al., 2020). Nonetheless, the limited definition of 

mathematical tasks — written prompts in the textbooks or assigned by only teachers makes 

it difficult to track to what extent features of the tasks influence students’ actual learning 

outcomes. In this study, we developed the MTAF, based on a holistic definition of 

mathematical tasks which includes both the written, intended tasks for the potential 

learning of mathematics and the process of learning and teaching through the enactment of 

the tasks. In this study, we applied the scoring rubric to analyze three multiplication tasks 

to illustrate the MTAF by its five dimensions: breadth of mathematical idea, depth of 

mathematical idea, bridging, openness, and interaction.  

The MATF can provide important information about the qualities of planned tasks 

for mathematics instruction (proactive) and the qualities of implemented tasks during 

instruction (reactive). That is, the potentials and realization of tasks can be identified in 

terms of various task features through the analytic framework. In the case of Task 3, the 

planned tasks seem to have high level of depth, bridging, and openness (i.e., score 3) and 

medium level of breadth and interaction (i.e., score 2). However, during the implementation, 
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the focus of classroom discussion oriented toward conceptual and procedural knowledge 

of multiplication, and students had opportunity to co-construct multiplicative reasoning by 

solving their peers’ posed problems. With related to cognitive demands, research has 

shown that teachers can change the levels of cognitive demands during lessons through 

instructional practices (Boston & Smith, 2009). However, our transformative results in the 

breadth and interaction show various features of mathematics tasks can be also altered by 

interactions during the instructions. Therefore, teachers are required to begin to value the 

high-level tasks with multiple features and can be equipped with more professional learning 

experience of how to maintain or increase the quality of tasks during implementation.   

During the implementation, the MATF can evaluate the quality of students’ 

opportunity to learn and engagement in lessons. While the MATF can be used to assess the 

planned tasks with five components, students’ learning practices and what they had learned 

can be a part of analysis as well when applying the developted framework. About the 

interaction component, for instance, we anticipated the quality of the written tasks as the 

medium level in the Tasks 1 (i.e., score 2), which is often guided and facilitated by teachers. 

However, during the lesson with Task 1, students were engaged in whole-group discussion 

to discuss whether the distribute property was working in addition. This conversation was 

initiated by one student and the students were able to build their knowledge of mathematical 

properties through the discussion (score 3). Therefore, the value of tasks can be 

interconnected with student learning by analyzing the reactive features of tasks.  

The MTAF enables us to specify the ongoing process of how each component of 

the task features are achieved while developing students’ mathematical proficiency. In 

addition, the framework proves its validity to indicate what elements of the task features 

correspond to the quality of student mathematical activity by considering both design and 

implementation of tasks (Henningsen & Stein, 1997). The MTAF also provides a unified 

lens to bridge a gap between what teachers do in classrooms and how or what students learn 

in the association with mathematical tasks (Tekkumru-Kia et al., 2020).  

The static view of task features often restricts a way of interpreting and conducting 

mathematical tasks (Liljedahl, 2020). Suppose a teacher adopts a high-level cognitive 

demand task and provides it to his/her students While we acknowledge higher potential to 

leverage students’ mathematical learning with this task, how can we guarantee that all 

teachers provide students the same quality of instruction as the task developers intended? 

Based on the fundamental design of a task, the ways how to maintain the various task 

features would also play an important role in developing students’ understanding in the 

enactment of the tasks (Berg, 2012). In short, the MTAF supplements existing task 

frameworks (e.g., van de Walle et al., 2019) by extending the notion of tasks to the entire 

enactment processes.  

Although this study illustrates the MTAF with only three mathematical tasks, 

future research opportunities exist in various forms. We suggest future research questions 

including but not limited to: How do teachers (or preservice teachers) use the MTAF to 

plan their instructions? How can this MTAF effectively be used to evaluate tasks given in 

the textbooks? How can the MTAF be improved? To what extent does the MTAF 

contribute for better implementations of a task in an authentic classroom setting? How do 
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teachers’ experiences influence their implementation of mathematical tasks in 

consideration of the tasks by each dimension? Along with other studies that incorporate the 

MTAF, such future studies will help teachers identify task characteristics in order to 

develop students’ mathematical thinking.  

A potential contribution of this study is to understand tasks in a direct association 

with students’ learning throughout the process of task enactment. This can be helpful for 

curriculum designers to select or construct mathematical tasks with more careful 

consideration of how each task feature would be attained through teacher and student 

interactions. In addition, employing the MTAF enhances teachers' selection and 

implementation of optimal tasks.  

 

References  

 

Arbaugh, F., & Brown, C. A. (2005). Analyzing mathematical tasks: A catalyst for change? 

Journal of Mathematics Teacher Education, 8(6), 499-536. 

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., … Tsai, Y. M. 

(2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, 

and student progress. American Educational Research Journal, 47(1), 133–180. 

Berg, C. V. (2012). From designing to implementing mathematical tasks: Investigating the 

changes in the nature of the T-shirt task. The Mathematics Enthusiast, 9(3), 347-358. 

Boston, M. D. (2012). Assessing instructional quality in mathematics. The Elementary 

School Journal, 113(1), 76-104. 

Boston, M. D., & Candela, A. G. (2018). The instructional quality assessment as a tool for 

reflecting on instructional practice. ZDM, 50(3), 427-444. 

Boston, M. D., & Smith, M. S. (2009). Transforming secondary mathematics teaching: 

Increasing the cognitive demands of instructional tasks used in teachers' classrooms. 

Journal for Research in Mathematics Education, 40(2), 119-156. 

Carpenter, T. P., Fennema, E., Fuson, K. C., Hiebert, J., Murray, H., & Wearne, D. (1997). 

Making sense: Teaching and learning mathematics with understanding. Heinemann. 

Charalambous, C. Y. (2010). Mathematical knowledge for teaching and task unfolding: An 

exploratory study. The Elementary School Journal, 110(3), 247-278. 

Christiansen, B., & Walther, G. (1986). Task and activity. In B. Christiansen, A. G. 

Howson, & M. Otte (Eds.), Perspectives on mathematics education (pp. 243-307). 

Reidel Publishing Company. 

Civil, M., & Andrade, R. (2002). Transitions between home and school mathematics: Rays 

of hope amidst the passing clouds. In G. D. Abreu, A. J. Bishop, & N. C. Presmeg 

(Eds.), Transitions between contexts of mathematical practices (pp. 149-169). 

Kluwer. 

Clarke, D., & Roche, A. (2018). Using contextualized tasks to engage students in 

meaningful and worthwhile mathematics learning. The Journal of Mathematical 

Behavior, 51, 95-108. 

Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and 

research. Educational Evaluation and Policy Analysis, 25(2), 119-142. 



306 Yeo et al. 

Crespo, S. (2003). Learning to pose mathematical problems: Exploring changes in 

preservice teachers' practices. Educational Studies in Mathematics, 52(3), 243-270. 

Doyle, W. (1983). Academic work. Review of Educational Research, 53(2), 159-199. 

Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during 

instruction. Educational Psychologist, 23(2), 167-180. 

Drake, C., Land, T. J., Bartell, T. G., Aguirre, J. M., Foote, M. Q., McDuffie, A. R., & 

Turner, E. E. (2015). Three strategies for opening curriculum spaces. Teaching 

Children Mathematics, 21(6), 346-353. 

Fan, L., & Zhu, Y. (2007). Representation of problem-solving procedures: A comparative 

look at China, Singapore, and US mathematics textbooks. Educational Studies in 

Mathematics, 66(1), 61-75. 

Francisco, J. M., & Maher, C. A. (2011). Teachers attending to students’ mathematical 

reasoning: Lessons from an after-school research program. Journal of Mathematics 

Teacher Education, 14(1), 49-66. 

Giménez, J., Font, V., & Vanegas, Y. (2013). Designing professional tasks for didactical 

analysis as a research process. In C. Margolinas (Ed.), Task design in mathematics 

education. Proceedings of ICMI Study 22 (pp. 581-590). ICMI studies. 

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: 

Classroom-based factors that support and inhibit high-level mathematical thinking 

and reasoning. Journal for Research in Mathematics Education, 28(5), 524-549 

Herbel-Eisenmann, B. A., & Otten, S. (2011). Mapping mathematics in classroom 

discourse. Journal for Research in Mathematics Education, 42(5), 451-485. 

Herbst, P., & Chazan, D. (2012). On the instructional triangle and sources of justification 

for actions in mathematics teaching. ZDM, 44(5), 601-612. 

Hiebert, J., & Wearne, D. (1993). Instructional tasks, classroom discourse, and students’ 

learning in second-grade arithmetic. American Educational Research Journal, 30(2), 

393-425. 

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., ... & Wearne, 

D. (1996). Problem solving as a basis for reform in curriculum and instruction: The 

case of mathematics. Educational Researcher, 25(4), 12-21. 

Horoks, J., & Robert, A. (2007). Tasks designed to highlight task-activity relationships. 

Journal of Mathematics Teacher Education, 10(4-6), 279-287. 

Jäder, J., Sidenvall, J., & Sumpter, L. (2017). Students’ mathematical reasoning and beliefs 

in non-routine task solving. International Journal of Science and Mathematics 

Education, 15(4), 759-776. 

Jitendra, A. K., Griffin, C. C., Haria, P., Leh, J., Adams, A., & Kaduvettoor, A. (2007). A 

comparison of single and multiple strategy instruction on third-grade students' 

mathematical problem solving. Journal of Educational Psychology, 99(1), 115. 

Kazemi, E., & Stipek, D. (2009). Promoting conceptual thinking in four upper-elementary 

mathematics classrooms. Journal of Education, 189(1-2), 123-137. 

Kim, J. (2014). Instructional materials for learner-centered mathematics instruction, 

Educational Research in Science and Mathematics, 37, 169-185. 

Kim, J. (2020). Mathematics classroom for students to enjoy: Grade 3 addition and 



METACOGNITIVE STRATEGIES 307 

subtraction. Kyoyook Book.  

Kim, J. (2021). Mathematics classroom for students to enjoy: Grade 3 multiplication and 

division. Kyoyook Book.  
Kisker, E. E., Lipka, J., Adams, B. L., Rickard, A., Andrew-Ihrke, D., Yanez, E. E., & 

Millard, A. (2012). The potential of a culturally based supplemental mathematics 

curriculum to improve the mathematics performance of Alaska Native and other 

students. Journal for Research in Mathematics Education, 43(1), 75-113. 

König, J., Bremerich-Vos, A., Buchholtz, C., & Glutsch, N. (2020). General pedagogical 

knowledge, pedagogical adaptivity in written lesson plans, and instructional practice 

among preservice teachers. Journal of Curriculum Studies, 52(6), 800-822. 

Lampert, M. (2001). Teaching problems and the problems of teaching. Yale University 

Press. 

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. 

Cambridge University Press. 

Li, Y. (2000). A comparison of problems that follow selected content presentations in 

American and Chinese mathematics textbooks. Journal for Research in Mathematics 

Education, 31(2), 234-241. 

Liljedahl, P. (2020). Building thinking classrooms in mathematics, grades K-12: 14 

teaching practices for enhancing learning. Corwin Press. 

Liljedahl, P., Chernoff, E., & Zazkis, R. (2007). Interweaving mathematics and pedagogy 

in task design: A tale of one task. Journal of Mathematics Teacher Education, 10(4-

6), 239-249. 

National Council of Teachers of Mathematics. (1991). Professional standards for teaching 

mathematics. Author. 

National Council of Teachers of Mathematics. (2000). Principles and standards for school 

mathematics. Author. 

National Council of Teachers of Mathematics. (2014). Principles to action: Ensuring 

mathematical success for all. Author. 

National Research Council. (2001). Adding it up: Helping children learn mathematics. The 

National Academies Press. 

Ni, Y., Zhou, D., Li, X., & Li, Q. (2014). Relations of instructional tasks to teacher–student 

discourse in mathematics classrooms of Chinese primary schools. Cognition and 

Instruction, 32(1), 2-43. 

Norton, A., & Kastberg, S. (2012). Learning to pose cognitively demanding tasks through 

letter writing. Journal of Mathematics Teacher Education, 15(2), 109-130. 

Polly, D. (2015). Examining how professional development influences elementary school 

teachers’ enacted instructional practices and students’ evidence of mathematical 

understanding. Journal of Research in Childhood Education, 29(4), 565-582. 

Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher's 

mathematics beliefs and teaching practice. Journal for Research in Mathematics 

Education, 28(5), 550-576. 

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of 

mathematics curricula. Review of Educational Research, 75(2), 211-246. 



308 Yeo et al. 

Romberg, T. (1994). Classroom instruction that fosters mathematical thinking and problem 

solving: connections between theory and practice. In A. Schoenfeld (Ed.), 

Mathematical thinking and problem solving (pp. 287-304). Lawrence Erlbaum 

Associates. 

Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical 

research: Instrumenting the epistemological and cognitive aspects of the design of 

teaching sequences. Educational Researcher, 38(5), 329-342. 

Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and 

technology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 

97-118). Cambridge. 

Schmidt, W. H., McKnight, C. C., & Raizen, S. A. (1997). A splintered vision: An 

investigation of U.S. science and mathematics education. Kluwer Academic. 

Schoenfeld, A. H. (1992). On paradigms and methods: What do you do when the ones you 

know don't do what you want them to? Issues in the analysis of data in the form of 

videotapes. The Journal of the Learning Sciences, 2(2), 179-214. 

Shaughnessy, M., Garcia, N. M., O’Neill, M. K., Selling, S. K., Willis, A. T., Wilkes, C. 

E., Salazar, S. B., & Ball, D. L. (2021). Formatively assessing prospective teachers’ 

skills in leading mathematics discussions. Educational Studies in Mathematics, 

108(3), 451-472. 

Sherin, M. G. (2002). A balancing act: Developing a discourse community in a 

mathematics classroom. Journal of Mathematics Teacher Education, 5(3), 205-233. 

Simon, M. A., Placa, N., & Avitzur, A. (2016). Participatory and anticipatory stages of 

mathematical concept learning: Further empirical and theoretical development. 

Journal for Research in Mathematics Education, 47(1), 63-93. 

Singer, F. M., Voica, C., & Pelczer, I. (2017). Cognitive styles in posing geometry 

problems: Implications for assessment of mathematical creativity. ZDM, 49(1), 37-

52. 

Son, J. W. (2012). A cross-national comparison of reform curricula in Korea and the US in 

terms of cognitive complexity: The case of fraction addition and subtraction. ZDM, 

44(2), 161-174. 

Son, J. W., & Senk, S. L. (2010). How reform curricula in the USA and Korea present 

multiplication and division of fractions. Educational Studies in Mathematics, 74(2), 

117-142. 

Stein, M. K., Smith, M. S., Henningsen, M., & Silver, E. A. (2000). Implementing 

standards-based mathematics instruction: A casebook for professional development. 

Teachers College Press. 

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for 

mathematical thinking and reasoning: An analysis of mathematical tasks used in 

reform classrooms. American Educational Research Journal, 33(2), 455-488. 

Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: 

From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-

275. 

Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A. (2009). Implementing 



METACOGNITIVE STRATEGIES 309 

standards-based mathematics instruction: A casebook for professional development. 

Teachers College Press and the National Council of Teachers of Mathematics. 

Stillman, G. (2000). Impact of prior knowledge of task context on approaches to 

applications tasks. The Journal of Mathematical Behavior, 19(3), 333-361. 

Tarr, J. E., Chávez, Ó ., Reys, R. E., & Reys, B. J. (2006). From the written to the enacted 

curricula: The intermediary role of middle school mathematics teachers in shaping 

students' opportunity to learn. School Science and Mathematics, 106(4), 191-201. 

Tarr, J. E., Reys, R. E., Reys, B. J., Chávez, Ó ., Shih, J., & Osterlind, S. J. (2008). The 

impact of middle-grades mathematics curricula and the classroom learning 

environment on student achievement. Journal for Research in Mathematics 

Education, 39(3), 247-280. 

Tekkumru-Kisa, M., Stein, M. K., & Doyle, W. (2020). Theory and research on tasks 

revisited: Task as a context for students’ thinking in the era of ambitious reforms in 

mathematics and science. Educational Researcher, 49(8), 606-617. 

van de Walle, J. A., Karp, K., & Bay-Williams, J. M. (2019). Elementary and middle school 

mathematics: Teaching developmentally (10th ed.). Pearson. 

Watson, A., & Mason, J. (2007). Taken-as-shared: A review of common assumptions about 

mathematical tasks in teacher education. Journal of Mathematics Teacher Education, 

10, 205–215. 

Watson, A., & Ohtani, M. (2015). Themes and issues in mathematics education concerning 

task design. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education: 

An ICMI study (pp. 3-15). Springer. 

Wijaya, A., van den Heuvel-Panhuizen, M., & Doorman, M. (2015). Opportunity-to-learn 

context-based tasks provided by mathematics textbooks. Educational Studies in 

Mathematics, 89(1), 41-65. 

Yeh, C., Ellis, M., & Hurtado, C. (2016). Reimagining the mathematics classroom: 

Creating and sustaining productive learning environments, K-6. National Council of 

Teachers of Mathematics. 

Yeo, J. B. (2017). Development of a framework to characterise the openness of 

mathematical tasks. International Journal of Science and Mathematics Education, 

15(1), 175-191. 

 

 

 


