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Abstract Some sufficient conditions on the existence and uniqueness of
certain symmetric balanced incomplete block design are introduced. Also.
a construction algorithm for the design and some examples are presented.
The algorithm is developed based on the construction of subspaces of the
three-dimensional vector space over a field.

1. Introduction

The theory of design of experiments came into being largely
through the work of R. A. Fisher and F. Yates in the early 1930°s[1].
They were motivated by questions of design of careful field exper-
iments in agriculture. Although the applicability of this theory
is now very widespread, much of the terminology still bears the
stamp of its origins. Consider an agricultural experiment. Sup-
pose it is desired to compare the yield of v different varieties of
grain. It is quite possible that there would be an interaction be-
tween the environment (type of soil, rainfall, drainage. etc.) and
the variety of grain which would alter the yields. So. b blocks
(sets of experimental plots) are chosen in which the environment
is fairly consistent throughout the block. In other types of exper-
iments in which the environment might not be a factor, blocks
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could be distinguished as plots which receive a particular treat-
ment (say, are given a particular type of fertilizer). In this way.
the classification of the experimental plots into blocks and varieties
can be used whenever there are two factors which may influence
vield. The obvious technique of growing every variety in a plot
in every block may, for large experiments, be too costly or im-
practical. To deal with this, one would use smaller blocks which
did not contain all of the varieties. Now the problem is one of
comparison, to minimize the effects of chance due to incomplete
blocks, we would want to design the blocks so that the probability
of two varieties being compared (i.e., are in the same block) is the
same for all pairs. This property would he called balance in the
design. Statistical techniques, in particular, Analysis of Variance,
could then be used to reach conclusions about the experiment[1].

Generation of balanced incomplete block design(BIBD), a spe-
cial case of block design, is a standard combinatorial problem from
design theory, originally used in the design of statistical experi-
ments but since finding other applications such as cryptography.
Usually, symmetric BIBDs are used in conference key distribution
system[6] and visual cryptographic schemes(3,4]. A conference
key distribution system is a scheme to generate a conference key,
and then to distribute this key to only paticipants attending at
the conference in order to communicate with each other securely.
Visual cryptographic scheme is a simple method which can be
directly decoded the secret information in human visual system
without performing any cryptographic computation. The visual
cryptographic schemes using BIBD is better than another ones in
relative contrast[4].

One of the main goals of combinatorial design theory is to de-
termine necessary and sufficient conditions for the existence of
a BIBD. This is a very difficult problem in general. However,
there are many known constructions for some classes of BIBDs
with small number of objects, as well as some other necessary
conditions[2]. But, there is no known sufficient condition on the
existence of a BIBD. Also, it is not easy to construct a BIBD
with large(or arbitrary) number of objects. In this paper, we
present some sufficient conditions on the existence and unique-
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ness of certain symmetric BIBDs. Also. we introduce a practical
construction algorithin for a symmetric BIBD in projective plane.

2. Symmetric BIBD and projective plane

Codewords are generated by employing a block design among
methods of generation of error-correcting codes. By a block design
we mean a selection of the subsets of a given set such that somne
prescribed conditions are satistied. In some designs, the elements
in each of the subsets are also to be ordered in a certain way. A
BIBD is defined as follows[6).

Let X = {z1,29, -+ ,x,} be a set of v objects. A (b,v.r k,A)-
BIBD of X is a collection of b blocks By. By. -+ . By which are
subsets of X such that the following conditions are satisfied:

(1) Each block contains k objects.

(2) Each object appears in exactly » blocks.

(3) Every two objects appears simnltaneously in exactly A
blocks.

(4) k<.

Property (3) is the “balance” property. A BIBD is called an
“incomplete block” design because of (4). Also, note a BIBD
may contain “repeated blocks” if A > 1, which is why we refer
to a collection of blocks rather than a set[5]. Since a BIBD is
characterized by the five parameters b,v, 7 k, and A, it is also
called a (b, v, r, k, A)-configuration. It is known that bk = vr and
r(k—1) = A(v — 1) in a BIBD[2].

A (b,v,r, k, A\)-BIBD can be described by the incidence matriz
M which is useful for computer programs. It is a b x v zero-one
matriz, i.e., its entries are 0 and 1. The rows and columns of
the matrix correspond to the blocks and the objects, respectively.
The entry in the ¢ — th row and the 5 — th column of M is 1 if the
block B; contains the object x; and is 0 otherwise.

Let I, be the b x b identity matrix, Jy the b x b matrix in which
every entry is 1, and wup(or u,) be the vector of length b{or v)
in which every coordinate is 1. For a matrix M, let M7T be the
transpose of M. Then we have the following theorem|2].

THEOREM 2.1. Let M be a b x v zero-one matrix. Then M is
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the incidence matrix of a (b,v.r. k. A)-BIBD if and only if
MMT = X1y + (r = M1y and upM = ku,.

In some special cases of a BIBD, the number of blocks is the
same as that of objects. A (h.v.r. k, A)-BIBD is said to be a
symmetric (v, k, A)-BIBD if b = v and r = k. The following theo-
rem gives the necessary conditions for the existence of symmetric
BIBD with given parameters v, k, and A[2}.

THEOREM 2.2. (Bruck-Ryser-Chowla Theroem) Suppose there
exists a symmetric (v, k, A)-BIBD. If v is even, then it must be the
case that k — A is a perfect square ; and if v is odd, then there
must exist integers x,y, and z (not all 0) such that

2? = (k - Ny? + (1) 1232

A finite projective plane of order ¢ with q > 0 is a collection of
q*> + g + 1 lines and ¢% + ¢ + 1 points such that
(1) every line contains g + 1 points,

(2) every point is on g + 1 lines,
(3) any two distinct lines intersect at exactly one point, and
(4) any two distinct points lie on exactly one line(see [7]).

From the definition of finite pojective plane, it becomes a sym-
metric (g2 + ¢+ 1,q + 1,1)-BIBD since it has ¢% + g + 1 objects,
each block contains exactly g+ 1 objects, and every pair of distinct
objects is contained in exactly one block.

A finite projective plane exists when the order ¢ is a power
of a prime, i.e., ¢ = p” for n > 1 and prime p ([2,7]). It is
conjectured that these are the only possible projective planes, but
proving this remains one of the most important unsolved problems
in combinatorics. The first few orders which are powers of primes
are 2, 3,4,5,7.8,9,11. 13, 16, ---. The first few orders which
are not of this form are 6, 10, 12, 14, 15,---. It is known that
there are no finite projective planes of order 6 and 10 ([2,7]).

3. Sufficient conditions of symmetric BIBD
In this section, we present some sufficient conditions.
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THEOREM 3.1. For anv v and k > 2, there exists a svimmetric
(v. k. A)-BIBD.
Proof. Let

Bl - {il?l..’lfg. Lo ,;l',‘,wg.:’[?;;”l}.

By = {w1. .+ Ly—3. Lyp—2. Ly}

By_oy = {x1 @3, 04, Ly iy}
B, = {we, T3, XTy-1.To}-
Then it becomes a symmetric (v. k. A)-BIBD with &£ = v — 1 and

A = v — 2. Thus, there always exists a symmetric (v, k. A)-BIBD
for any v and k > 2. The incidence matrix becomes

Ty T2 T3 - Ty-o Tyoi Ty
B ( 1 1 1 1 L0
B, 1 11 1 0 1
Bs 1 1 1 - 0 11
B,o|1 1t 0o - 1 11
Booi|l 1 0 1 - 1 11

B, \o0o 1 1 - 1 1 1

a
We call the BIBD in Theroem 3.1 the trivial symmetric BIBD.

THEOREM 3.2. Ifv =p™ +1 for a prime p and m > 1, there is
the only one symmetric (v, k, A) -BIBD. It is the trivial symmetric
(v,v—1,v - 2)-BIBD.

Proof. Case 1 : m = 1.
Suppose that another symmetric (v, k. A)-BIBD. non-trivial BIBD.
exists. Then k < por k—1 < psince k < wv. From the property of
BIBD described in Section 2. 7 =k and v = p+ 1. k(k — 1) = Ap.
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Thus p divides either & or & — 1 since p.is a prime number. If
p divides k. 2 < k < v — 1 since the given BIBD is not trivial
and k < v. Therefore, k < p, which is a contradiction due to the
assumption that p divides k. Similarly, if p divides k — 1. we have
a contradiction.
Case2: m > 2.

Suppose that another symmetric (v. k. A)-BIBD exists. Then k <
p™ or k—1< p™ . Hence, k(k — 1) = Ap™. Since p is prime, p
divides either k or k—1. If p divides k. k = p’ forsome [, 1 < <
m. Thus k — 1 = Ap™~'. Hence, p divides k — 1. Since p cannot
divide both k and k£ — 1, we have a contradiction. Similarly, if p
divides £ — 1, then we have a contradiction. Thus, the only one
symmetric BIBD exists. (]

From the fact that k(k — 1) = A(v — 1) in symmetric (v, k, A)-
BIBD, we have the following corollary.

COROLLARY 3.3. If v = pg -+ 1, where p and q are distinct
prime numbers (p,q > 3), there is no symmetric (v, k, A)-BIBD
for any odd number A.

ExAMPLE 3.4. From the above theorems, we can classify sym-
metric (v, k, A)-BIBD for each v.
(1) For primes p = 2,3,5,7,11,13,17,19,23, - - -,

if v=p+1, v=34,681214,1820,24, -,
if v=p*+1, v=>5,10,26,50,:,

if v=p3+1, v=0928126---,

if v=p*+1, v=1782, -,

These cases have the unique symmetric with & = v — 1 and A =
v — 2.

(2) If we consider another BIBDs, for example, in case of v = 7, it
has three symmetric BIBDs, that is, (7,3,1)-BIBD known as finite
projective plane of order 2, (7.4,2)-BIBD, and the trivial (7,6,5)-
BIBD. For the case of v = 11, it has (11,5,2)-BIBD and the trivial
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(11,10.9)-BIBD. For other v. we have the following synunetric
BIBDs:

v=13. r=4, A=1,
v=10. r=T7. A=3.
v=16. r=0, A=2,
p=19, r =9 A=4,
v=21, r==58 A=1,

and the trivial BIBD. Another cases may exist for each wv.

4. Construction algorithm

To develop our algorithm for constructing the symmetric (¢* +
q+ 1,9+ 1,1)- BIBD known as projective plane of order g, con-
sider a field Z, = {0,1,--- ,¢ — 1} of order q. Then, in case of
prime p, the 3-dimensional vector space V over Z, is (Z,)® =
{(a,b,c)la,b,c € Zy}. We construct all the 1-dimensional and the
2-dimensional subspaces of V. It is begun by finding bases of
1-dimensional and 2-dimensional subspaces of V' as following.

Step 1. Construction of all 1-dimensional subspaces of V.
(1) zy =<(0,0,1) >= {a(0,0,1)|a € Z4}.
(2) Foralli=0,1,---,q—1,
Titz =< (0,1,7) >= {a(0.1,7) mod gla € Z4}.
(3) Foralli,5 =0,1,--- ,¢g—1,
Ta+1)+(i+2) =< (1,2, 7) >= {a(1,i,7) mod qla € Zy} .
Then each z; becomes a 1-dimensional subspace of V.
Let X = {x1,72, - ,Tg24q41}-
Here, < , > denotes a generator.

Step 2. Construction of all 2-dimensional subspaces of V.

(1) By =< (0,0,1) >+ < (0,1,0) >
= {a(0,0,1) + b(0,1,0)ja.b € Z,}.
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(2) Foralli =0,1,--- .¢~ 1.
By =< (0,0.1) > + < (1.4,0) >
= {a(0.0.1) + b(1.4.0) mod gla.b € Z,}.
(3) Foralli,7=0.1.--- ,qg—1,
B(l(i+1)+(j+2) :‘:: (01 1&) > ‘+’ < (]@ O.]) >
= {a(0,1.7) + b(1,0.§) mod gla.b € Z,}.
Let B={B1,Bs, - ,Bgjq41}-
Step 3. Construction of blocks.
Fori=1,---,¢? +¢q-+ 1, and for each B; € B, let

Ap, = {r € X|r C B;}.

That is, the g% + g+ 1 blocks Ap, are represented by the elements
of X.

Step 4. Find the incidence matrix.
Fori,j =1,2,---,¢% + g+ 1, the incidence matrix M = (m;;)

becomes )
{ 1, ifz; € Ap,,
myy = .
0, ifr; & Ap,.

Step 5. Test.

From Theorem 2.1 and the definition of symmetric (v, k, A)-
BIBD, it is easy to see that the incidence matrix M in Step 4
satisfies the following :

MMT = 2J, + (k= A1, and w,M = ku,,

where v = q> +q+1, k=¢+1, A =1, and J,, I, and u, are
defined as in the above of Theorem 2.1.

From Step 1, |X| = 1+ ¢+ ¢° and |z} = ¢ for z € X, ie,
the BIBD has ¢q? + ¢ + 1 objects. Also, from Step 2 and Step
3, |Bl =1+ q+¢? and |B| = ¢* for B € B, i.e., the BIBD has
q°> + g + 1 bolcks. By the two facts, we know that the number of
blocks is the same as that of objects. Also, from Step 3, each block
Ap, contains exactly ¢ + 1 objects. From Steps 1. 2, and 3. there
is a unique 2-dimensional subspace containing the 1-dimensional
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subspaces x; and z; for ¢ # j. This subspace determines the
unique block containing the objects z; and x; for i # j. Therefore,
from Steps 1-5, we have the symmetric (¢% +¢+1.¢+1.1)-BIBD.

The following example is computed under the Matlab environ-
ment.

EXAMPLE. Let g = 3. Then F3 = Zj. Let the three clements
in F3 be 0, 1. and 2. The 3-dimensional vector space V' consists of
all the 27 vectors (0.0,0). (0,0.1). (0.0,2), (0,1,0), (0,1.1).---
(2,2,2). The 1-dimensional sub&pdwq of V are as follows :

z1 = {(0,0,0),(0,0,1),(0,0,2)},z2 = {(0,0,0). (0,1,0), (0,2.0)},

z3 = {(0,0,0),(0,1,1),(0,2,2)}, 4 = {(6,0,0),(0.1,2),(0.2.1)}.

z5 = {(0,0,0),(1,0,0),(2,0,0)}. ws = {(0,0,0),(1,0,1),(2.0.2)},
o7 = {(0,0,0),(1,0.2),(2,0,1)},2s = {(0,0.0), (1.1.0), (2. 2.0)},
zo = {(0,0,0),(1,1,1),(2,2,2)}, 710 = {(0,0,0),(1,1,2), (2.2, 1)},
z11 = {(0,0,0),(1,2,0),(2,1,0)},

212 = {(0,0,0), (1,2, 1) (2,1,2)},

z13 = {(0,0,0),(1,2,2),(2,1,1)}.

The 2-dimensional subspaces of V are as follows:
B; = {(0,0,0),(0,1,0),(0,2,0),(0,0,1),(0, 1, 1),

(0,2,1),(0,0,2),(0,1,2),(0,2,2)},
B, = {(0,0,0),(1,0,0),(2,0,0),(0,0,1), (1,0, 1),
(2,0,1),(0,0,2),(1,0,2),(2,0,2)},

Bs = {(0,0,0), (1,1,0),(2,2,0),(0,0,1),(1,1,1),
(2,2,1),(0,0,2),(1,1,2),(2,2,2)},

By = {(0,0,0), (1,2,0),(2,1,0),(0,0,1),(1,2,1)
(2.1,1),(0,0,2),(1,2,2),(2,1.2)},

Bs = {(0.0,0),(1,0,0),(2,0,0), (0.1,0),(1,1,0),
(2,1,0),(0,2,0).(1,2,0),(2.2,0)},

Bg = {(0 0.0), (1,0,1).(2,0.2),(0.1,0),(1.1,1)
(2.1,2),(0,2,0).(1,2.1).(2.2,2)}.
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By = {(0,0,0), (1,0.2), (2.0,1).(0,1,0),(1.1.2).
(2.1,1),(0,2.0).(1.2,2).(2, 2. 1)},

Bs = {(0.0,0). (1.0.0),(2.0,0).(0.1.1). (1. 1. 1).
(2.1,1),(0.2.2).(1.2,2).(2.2.2)}.

By = {(0.0,0), (1,0.1).(2.0.2).(0.1.1). (1. 1. 2).
(2,1,0),(0,2.2),(1,2,0). (2.2.1) ).
Bio = {(0,0,0),(1,0,2).(2,0,1),(0,1,1), (1.1,0),
(2,1,2),(0,2,2). (1,2,1),(2,2.0)},

Bi1 = {(0,0.0),(1,0,0),(2,0,0),(0,1,2),(1,1,2)
(2,1,2),(0,2,1),(1.2,1), (2,2, 1)},

Biz = {(0,0,0), (1,0, 1),(2,0,2),(0,1,2), (1,1,0),
(2,1,1),(0,2,1),(1.2,2),(2,2,0)},

Bis = {(0,0,0), (1,0,2),(2,0,1),(0,1,2), (1,1,1),
(2,1,0),(0,2,1),(1,2,0),(2,2,2)}.

The 13 blocks are

Ap, = {z1,22,23,24}, Ap, = {21, 25,26, 7},
Ap, = {z1,7s,%9, T10}, A, = {T1,2Z11, 212,213},
Ap, = {:Ug,:Es,IEg,IL‘u}, AB@ = {552?336»5”911'12}3
Ap, = {z2, 27,210, T13}. ABs = {€3.25,Tg, 213},
Ap, = {x3,%6, 10,711}, Ay, = {23, 27,28, T12},
Ap,, = {z4, 25,710, T12}, Ay, = {T4, 6, Ts, T13},

Ap,, = {z4, 27,9, T11 }.

Thus, it becomes a finite projective plane of order 3, a symmetric
(13,4,1)-BIBD.

References

[1] B. Cherowitzo, Block Designs, Preprint, Department of Mathematics,
University of Colorado, 2001.

[2] D. R. Stinson, An introduction to Combinatorial Designs.
Preprint, Department of Combinatorics and Optimization, University of
Waterloo, 1999.



Sufficient conditions and construction of symmetric BIBD 119

[3] A. Shamir. How to share a secret. Comm. of the ACM. 22(1) (1979).
612-613.

[4] M. Naor and A. Shamir, Visual cryptegraphy. Advances in Cryptology-
EURO-CRYPTO'94 (1994). 1-12,

[6] D.R. Stinson. Combinatorial Designs with Selected Applications. Lecture
Notes, Department of Computer Science, University of Manitoba, 1996.

[6] M. Oh and 1. Chung, The conference key distribution system employing
a symmetric balanced incomplete block design. Proceedings of the ICIM’
01 (2001), 231-235.

[7] C. W. H. Lam. The Search for u Finite Projective Plane of order 10,
Preprint, Department of Computer Science, University of Concordia. 1996



