• 제목/요약/키워드: Mathematical Thinking Processes

검색결과 71건 처리시간 0.025초

수학 문제해결 과정에서 나타나는 초등학생들의 수학적 사고 분석 (An Analysis on the Elementary Students' Mathematical Thinking in the Mathematical Problem Solving Processes)

  • 조두경;박만구
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제47권2호
    • /
    • pp.169-180
    • /
    • 2008
  • The purpose of this study was to analyze the elementary students' mathematical thinking, which is found during mathematical problem solving processes based on mathematical knowledge, heuristics, control, and mathematical disposition. The participants were 8 fifth grade elementary students in Seoul. A qualitative case study was used for investigating the students' mathematical thinking. The data were coded according to the four components of the students' mathematical thinking. The results of the analyses concerning mathematical thinking of the elementary students were as follows: First, in terms of mathematical knowledge, the elementary students frequently used conceptual knowledge, procedural knowledge and informal knowledge during problem solving processes. Second, students tended not to find new heuristics or apply new one, but they only used the heuristics acquired from the experiences of the class and prior experiences. Third, control was found while students were solving problems. Last, mathematical disposition influenced on the mathematical problem solving processes. Teachers need to in-depth observations on the problem solving processes of students, which leads to teachers'effective assistance on facilitating students' problem solving skills.

  • PDF

사고구술법(思考口述法)을 이용한 수학(數學) 영재(英才)의 사고(思考) 특성(特性) 연구(硏究) (An Analysis on Thinking Processes of Mathematical Gifted Students Using Think-aloud Method)

  • 홍진곤;강은주
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제19권4호
    • /
    • pp.565-584
    • /
    • 2009
  • 본 연구의 목적은 수학 영재의 인지적 사고 과정 분석을 통해 수학적 사고 특성에 대하여 조망하는 분석틀을 제시하고 수학 영재의 사고 패턴을 구조화시키기 위한 것으로, 이를 위해 사고구술법을 통해 추출된 수학 영재의 사고 특성을 분석한다. 본 연구에서는 학생들의 사고 특성을 추출하는 분석틀과 문제 해결 단계 코드를 이용한 분석틀을 개발하였고, 수학 영재학생들이 문제 해결 과정 중 인지 활동으로 거치게 되는 절차와 사고 특성 지도를 살펴보고 대상 학생들이 여러 번의 시행착오 후 전체적인 과정을 수정하며 수행해 나가게 되는 방법과 문제의 최종적인 해결안을 도출해 내는 경로 탐색 과정을 종합적으로 살펴봄으로써, 수학 영재들의 수학적 사고 특성을 좀 더 과학적인 방법으로 분석하는 준거를 마련하였다.

  • PDF

수학자가 수학을 탐구하듯이 학습자도 수학을 탐구할 수 있는 방안 모색 (A Paper on the Pedagogy Focused in the Mathematical Thinking Mathematicians used)

  • 김진호
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제44권1호
    • /
    • pp.87-101
    • /
    • 2005
  • The purpose of this paper is to propose a teaching method which is focused on the mathematical thinking skills such as the use of induction, counter example, analogy, and so on mathematicians use when they explore their research fields. Many have indicated that students have learned mathematics exploring to use very different methods mathematicians have done and suggested students explore as they do. In the first part of the paper, the plausible whole processes from the beginning time they get a rough idea to a refined mathematical truth. In the second part, an example with Euler characteristic of 1. In the third, explaining the same processes with ${\pi}$, a model modified from the processes is designed. It is hoped that the suggested model, focused on a variety of mathematical thinking, helps students learn mathematics with understanding and with the association of exploring entertainment.

  • PDF

PBG(Problem Behavior Graph)를 이용한 수학적 사고 과정 분석 (An Analysis on Mathematical Thinking Processes of Gifted Students Using Problem Behavior Graph)

  • 강은주;홍진곤
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제23권3호
    • /
    • pp.545-562
    • /
    • 2009
  • PBG(Problem Behavior Graph; 문제해결 행동 그래프)는 인지 심리학자인 Newell과 Simon에 의해 제안된 것으로 연구 대상자가 문제를 해결할 때 인지 활동을 그래프 형식을 이용하여 그려놓은 것이다. 본 연구에서는 중학교에 재학 중인 수학 영재의 수학적 문제 해결에서 이루어지는 인지적인 과정을 추적하기 위하여, 사고구술법(Think-aloud method)으로 추출된 수학 영재 학생들의 사고 과정을 언어 프로토콜로 나타내고 분석한 것을 토대로 PBG를 구성하는 사례를 제시한다. 이를 통하여 수학 영재 학생들이 문제 해결 과정 중 인지 활동으로 거치게 되는 절차와 사고 과정 특성 지도를 살펴보고 대상 학생들이 여러 번의 시행착오 후 전체적인 과정을 수정하며 수행해 나가게 되는 방법과 문제의 최종적인 해결안을 도출해 내는 경로 탐색 과정을 종합적으로 살펴볼 수 있었다.

  • PDF

블록 쌓기 활동에서 나타난 만 0, 1, 2세반 영유아의 논리·수학적 사고 (Infants and Toddlers' Logico-mathematical Thinking Processes in a Block Building Activity)

  • 신은수;김현진;이선명
    • 아동학회지
    • /
    • 제36권2호
    • /
    • pp.75-94
    • /
    • 2015
  • The main purpose of this study was to examine the various aspects of logico-mathematical thinking and its development by observing a block building activity undertaken by infants and toddlers. The subjects comprised 73 young children from between the ages of 12- to 41-months-old. The interviewee was individually asked to build "something tall", making use of 20 blocks. The results of this study were, first, a regular increase by age is seen in congruence, the vertical use of flat blocks, and innovative ways of using triangular blocks. Second, many types of logico-mathematical thinking processes, such as classification, seriation, spatial relationship and temporal relationship, were shown during the block building activities on the part of the 12- to 41-months-olds who took part in this study.

교사 중심의 수학적 사고과정을 강조한 수업 효과 분석 (Analysis of Effectiveness of Teacher-Centered Instruction Stressed on Mathematical Thinking Processes)

  • 김진호;이남숙
    • 한국학교수학회논문집
    • /
    • 제8권1호
    • /
    • pp.35-53
    • /
    • 2005
  • 본 연구는 교사중심의 수업틀을 유지하면서 학습자의 사고활동을 강조한 대안적인 교수 활동의 효과를 검증하는데 있다. 이 수업으로 수업을 받는 학생들은 학업성취도면에서 전통적인 교사중심의 수업을 받은 학생들 보다 우수하였다. 따라서, 대안적인 교수법은 학교 현장에 학생들의 이해를 촉진할 수 있는 교수법이며, 또한 교사 중심의 틀을 유지하고 있기 때문에 학교현장에 적용가능한 교수법이다.

  • PDF

수학적 사고에 동원되는 두뇌 영역들과 이의 교육학적 의미 (Mathematical thinking, its neural systems and implication for education)

  • 김연미
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제52권1호
    • /
    • pp.19-41
    • /
    • 2013
  • What is the foundation of mathematical thinking? Is it logic based symbolic language system? or does it rely more on mental imagery and visuo-spatial abilities? What kind of neural changes happen if someone's mathematical abilities improve through practice? To answer these questions, basic cognitive processes including long term memory, working memory, visuo-spatial perception, number processes are considered through neuropsychological outcomes. Neuronal changes following development and practices are inspected and we can show there are neural networks critical for the mathematical thinking and development: prefrontal-anterior cingulate-parietal network. Through these inquiry, we can infer the answer to our question.

Fostering Mathematical Thinking and Creativity: The Percent Problem

  • Foong, Pui Yee
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제14권1호
    • /
    • pp.51-65
    • /
    • 2010
  • Open-ended problems can foster deeper understanding of mathematical ideas, generating creative thinking and communication in students. High-order thinking tasks such as open-ended problems involve more ambiguity and higher level of personal risks for students than they are normally exposed to in routine problems. To explore the classroom-based factors that could support or inhibit such higher-order processes, this paper also describes two cases of Singapore primary school teachers who have successfully or unsuccessfully implemented an open-ended problem in their mathematics lessons.

An Analysis of Pre-Service Teachers' Reflective Thinking for Tasks on Polar Coordinates

  • Oh, Hye Mi;Park, Jee Hyun;Kwon, Oh Nam
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제17권2호
    • /
    • pp.119-131
    • /
    • 2013
  • It is the first time that there is a subject, advanced mathematics in the 2009 revised high school curriculum. Therefore it is posing a challenge to the teachers who are teaching it. At the advanced level, it is important for learners to reflect on their mental mathematical activities. This research analysed pre-service secondary teachers' reflective thinking in solving the tasks specific for the teaching and learning of polar coordinates. We report how and through what process mathematical tasks that can create disequilibrium for pre-service secondary teachers enable reflective thinking and expand preservice secondary teachers' thoughts and recognition of defining reflective thinking in looking back on one's problem solving and thinking processes.

수학적 탐구력 신장을 위한 테크놀로지의 활용의 효과 (The Effective Use of a Technology Tool for Students' Mathematical Exploration)

  • 고상숙
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제42권5호
    • /
    • pp.647-672
    • /
    • 2003
  • This study sought to determine the impact of the graphing calculator on prospective math-teachers' mathematical thinking while they engaged in the exploratory tasks. To understand students' thinking processes, two groups of three students enrolled in the college of education program participated in the study and their performances were audio-taped and described in the observers' notebooks. The results indicated that the prospective teachers got the clues in recalling the prior memory, adapting the algebraic knowledge to given problems, and finding the patterns related to data, to solve the tasks based on inductive, deductive, and creative thinking. The graphing calculator amplified the speed and accuracy of problem-solving strategies and resulted partly in students' progress to the creative thinking by their concept development.

  • PDF