• Title/Summary/Keyword: Mathematical Optimization

Search Result 898, Processing Time 0.037 seconds

A Study on Optimization Model of Time-Cost Trade-off Analysisusing Particle Swarm Optimization (Particle Swarm Optimization을 이용한 공기-비용 절충관계 최적화 모델에 관한 연구)

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.91-98
    • /
    • 2008
  • It is time-consuming and difficulty to solve the time-cost trade-off problems, as there are trade-offs between time and cost to complete the activities in construction projects and this problems do not have unique solutions. Typically, heuristic methods, mathematical models and GA models has been used to solve this problems. As heuristic methods and mathematical models are have weakness in solving the time-cost trade-off problems, GA based model has been studied widely in recent. This paper suggests the time-cost trade-off optimization algorithm using particle swarm optimization. The traditional particle swarm optimization model is modified to generate optimal tradeoffs among construction time and cost efficiently. An application example is analyzed to illustrate the use of the suggested algorithm and demonstrate its capabilities in generating optimal tradeoffs among construction time and cost. Future applications of the model are suggested in the conclusion.

Uncertain Centralized/Decentralized Production-Distribution Planning Problem in Multi-Product Supply Chains: Fuzzy Mathematical Optimization Approaches

  • Khalili-Damghani, Kaveh;Ghasemi, Peiman
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.2
    • /
    • pp.156-172
    • /
    • 2016
  • Complex and uncertain issues in supply chain result in integrated decision making processes in supply chains. So decentralized (distributed) decision making (DDM) approach is considered as a crucial stage in supply chain planning. In this paper, an uncertain DDM through coordination mechanism is addressed for a multi-product supply chain planning problem. The main concern of this study is comparison of DDM approach with centralized decision making (CDM) approach while some parameters of decision making are assumed to be uncertain. The uncertain DDM problem is modeled through fuzzy mathematical programming in which products' demands are assumed to be uncertain and modeled using fuzzy sets. Moreover, a CDM approach is customized and developed in presence of fuzzy parameters. Both approaches are solved using three fuzzy mathematical optimization methods. Hence, the contribution of this paper can be summarized as follows: 1) proposing a DDM approach for a multi-product supply chain planning problem; 2) Introducing a coordination mechanism in the proposed DDM approach in order to utilize the benefits of a CDM approach while using DDM approach; 3) Modeling the aforementioned problem through fuzzy mathematical programming; 4) Comparing the performance of proposed DDM and a customized uncertain CDM approach on multi-product supply chain planning; 5) Applying three fuzzy mathematical optimization methods in order to address and compare the performance of both DDM and CDM approaches. The results of these fuzzy optimization methods are compared. Computational results illustrate that the proposed DDM approach closely approximates the optimal solutions generated by the CDM approach while the manufacturer's and retailers' decisions are optimized through a coordination mechanism making lasting relationship.

ON DUALITY THEOREMS FOR ROBUST OPTIMIZATION PROBLEMS

  • Lee, Gue Myung;Kim, Moon Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.723-734
    • /
    • 2013
  • A robust optimization problem, which has a maximum function of continuously differentiable functions as its objective function, continuously differentiable functions as its constraint functions and a geometric constraint, is considered. We prove a necessary optimality theorem and a sufficient optimality theorem for the robust optimization problem. We formulate a Wolfe type dual problem for the robust optimization problem, which has a differentiable Lagrangean function, and establish the weak duality theorem and the strong duality theorem which hold between the robust optimization problem and its Wolfe type dual problem. Moreover, saddle point theorems for the robust optimization problem are given under convexity assumptions.

Application of the Infinite Dimensional Optimization to Marine Propellers and Its Mathematical Uniqueness (무한차원최적화의 추진기에의 응용과 그의 수학적 유일성 고찰)

  • Jang, Taek-S.;Hong, Sa-Y.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.231-236
    • /
    • 2002
  • By using the infinite dimensional optimization[Jang and Kinoshita(2000)]. which is based on the Hilbert space theory, optimal marine propellers are studied. The mathematical uniqueness for the optimized propeller is shown in this study. As a numerical example, the MAU type propeller is considered and used as the initial guess for the optimization method. The numerical results for an optimal marine propeller is illustrated for the pitch distribution.

  • PDF

ROBUST PORTFOLIO OPTIMIZATION UNDER HYBRID CEV AND STOCHASTIC VOLATILITY

  • Cao, Jiling;Peng, Beidi;Zhang, Wenjun
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1153-1170
    • /
    • 2022
  • In this paper, we investigate the portfolio optimization problem under the SVCEV model, which is a hybrid model of constant elasticity of variance (CEV) and stochastic volatility, by taking into account of minimum-entropy robustness. The Hamilton-Jacobi-Bellman (HJB) equation is derived and the first two orders of optimal strategies are obtained by utilizing an asymptotic approximation approach. We also derive the first two orders of practical optimal strategies by knowing that the underlying Ornstein-Uhlenbeck process is not observable. Finally, we conduct numerical experiments and sensitivity analysis on the leading optimal strategy and the first correction term with respect to various values of the model parameters.

OPTIMALITY AND DUALITY FOR NONDIFFERENTIABLE FRACTIONAL PROGRAMMING WITH GENERALIZED INVEXITY

  • Kim, Gwi Soo;Kim, Moon Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.465-475
    • /
    • 2016
  • We establish necessary and sufficient optimality conditions for a class of generalized nondifferentiable fractional optimization programming problems. Moreover, we prove the weak and strong duality theorems under (V, ${\rho}$)-invexity assumption.

OPTIMIZATION AND IDENTIFICATION FOR THE NONLINEAR HYPERBOLIC SYSTEMS

  • Kang, Yong-Han
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.317-330
    • /
    • 2000
  • In this paper we consider the optimal control problem of both operators and parameters for nonlinear hyperbolic systems. For the identification problem, we show that for every value of the parameter and operators, the optimal control problem has a solution. Moreover we obtain the necessary conditions of optimality for the optimal control problem on the system.

  • PDF

ASYMPTOTIC ANALYSIS FOR PORTFOLIO OPTIMIZATION PROBLEM UNDER TWO-FACTOR HESTON'S STOCHASTIC VOLATILITY MODEL

  • Kim, Jai Heui;Veng, Sotheara
    • East Asian mathematical journal
    • /
    • v.34 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • We study an optimization problem for hyperbolic absolute risk aversion (HARA) utility function under two-factor Heston's stochastic volatility model. It is not possible to obtain an explicit solution because our financial market model is complicated. However, by using asymptotic analysis technique, we find the explicit forms of the approximations of the optimal value function and the optimal strategy for HARA utility function.

ITERATION METHOD FOR CONSTRAINED OPTIMIZATION PROBLEMS GOVERNED BY PDE

  • Lee, Hyung-Chun
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.195-209
    • /
    • 1998
  • In this paper we present a new iteration method for solving optimization problems governed by partial differential equations. We generalize the existing methods such as simple gradient methods and pseudo-time methods to get an efficient iteration method. Numerical tests show that the convergence of the new iteration method is much faster than those of the pseudo-time methods especially when the parameter $\sigma$ in the cost functional is small.

  • PDF