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ASYMPTOTIC ANALYSIS FOR PORTFOLIO OPTIMIZATION

PROBLEM UNDER TWO-FACTOR HESTON’S STOCHASTIC

VOLATILITY MODEL

Jai Heui Kim* and Sotheara Veng

Abstract. We study an optimization problem for hyperbolic absolute risk

aversion (HARA) utility function under two-factor Heston’s stochastic volatil-
ity model. It is not possible to obtain an explicit solution because our finan-

cial market model is complicated. However, by using asymptotic analysis

technique, we find the explicit forms of the approximations of the optimal
value function and the optimal strategy for HARA utility function.

1. Introduction

Based on the pioneering work by Merton [7], the portfolio optimization prob-
lem has been studied by many authors. The purpose of the the portfolio opti-
mization is to find the optimal value function and the optimal strategy which
gives the maximal expected utility of the final wealth at the maturity time.

In this study, we suppose that an investor manages his or her initial wealth X0

by investing in a financial market consisting of a risky asset and a risk-free asset
whose price processes are given as follows. The price Bt of the risk-free asset at
time t follows the ordinary differential equation (ODE)

dBt = rBtdt, (1.1)

where r > 0 is a constant interest rate. The price St of risky one is given by the
following stochastic differential equation (SDE)

dSt
St

= µ(Yt, Zt)dt+ f(Yt)
√
ZtdW

s
t , (1.2)
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where

dYt =
Zt
ε
β(Yt)dt+

√
Zt
ε
α(Yt)dW

y
t , (1.3)

dZt = κ(θ − Zt)dt+ σ
√
ZtdW

z
t . (1.4)

Here W s,W y and W z are correlated Brownian motions in a filtered probability
space

(
Ω,F ,Ft, P

)
with correlation structure given by

d
〈
W s,W y

〉
t

= ρsydt, d
〈
W s,W z

〉
t

= ρszdt, d
〈
W y,W z

〉
t

= ρyzdt.

The correlation coefficients ρsy, ρsz and ρyz are constants in (−1, 1) satisfying
ρ2
sy + ρ2

sz + ρ2
yz − 2ρsyρszρyz < 1, so that the covariance matrix of the Brownian

motions is guaranteed to be positive definite. The process Zt is a Cox-Ingersoll-
Ross (CIR) process, where θ is the long run mean, κ is the rate of mean reversion,
and σ is the the volatility of volatility. The parameters κ, θ and σ are positive
constants and required to satisfy the Feller condition 2κθ ≥ σ2 to ensure that
the process Zt is always positive starting with Z0 > 0. We assume that the
coefficients µ(y, z), f(y), α(y) and β(y) satisfy some conditions to guarantee the
existence and uniqueness of strong solutions for (1.2) and (1.3).

We assume that given Zt = z, the process Yt in (1.3) is a mean-reverting

process and Yt = Y
(1)
t/ε in distribution, where Y (1) is an ergodic diffusion process

with unique invariant distribution denoted by Φ (independent of ε) and has the
infinitesimal generator L0 defined by

L0 =
1

2
α2(y)

∂2

∂y2
+ β(y)

∂

∂y
. (1.5)

We use the notation 〈·〉 for averaging with respect to Φ, i.e.,

〈g〉 =

∫
g(y)Φ(dy). (1.6)

In this case we call (Bt, St) a financial market with two-factor Heston’s stochastic
volatility model.

We observe that in the case that f(y) = 1 and µ(y, z) = µ(z) is independent
of y, our model reduces the Heston stochastic volatility model considered by [6].

Note also that when β(y) = m− y and α(y) =
√

2ν, with m and ν constant, the
model becomes a generalized Heston model considered in [1] for an option pricing
problem. So, we may call our system (1.2)-(1.4) an extended Heston stochastic
volatility model.

We assume that the investor dynamically manages his or her portfolio by
allocating a fraction πt of the wealth at time t ∈ [0, T ] in the risky asset, while
the remaining amount is held in the risk-free asset earning the risk-free interest
of r. Assuming the investment strategy π is self-financing, the associated wealth
process Xπ

t satisfies

dXt = Xt {r + πt (µ(Yt, Zt)− r)} dt+ πtf(Yt)
√
ZtXtdW

s
t . (1.7)
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We assume that all coefficients of the above SDEs are Ft–progressively measur-
able and that each of SDEs (1.2) - (1.4) and (1.7) has unique strong solution.
Given for a fixed parameter ε and a strategy πt, we denote the solution of (1.7)
by (Xε,π(t))t∈[0,T ]. The control function πt is said to be admissible if it is Ft–
progressively measurable and satisfies

E
[ ∫ T

0

π2
t f

2(Yt)ZtX
2
t dt
]
<∞.

We denote the set of all admissible strategies by A. We assume that µ(Yt, Zt)−
r = µ(Yt)Zt, so that the market price of risk ζt is given by

ζt =
µ(Yt, Zt)− r
f(Yt)

√
Zt

=
µ(Yt)

f(Yt)

√
Zt := λ(Yt)

√
Zt. (1.8)

We define the value function corresponding to an investment strategy π by

V ε,π(t, x, y, z) = E
[
U(Xε,π

T )
∣∣Xε,π

t = x, Yt = y, Zt = z
]
.

for all (t, x, y, z) ∈ [0, T ] ×R1 ×R1 ×R1, where U is a HARA utility function
defined by

U(x; p, q, η) =
1− p
pq

(
qx

1− p
+ η

)p
, q > 0, p < 1, p 6= 1 (1.9)

and E[X|A] is the conditional expectation of a random variable X given an event
A. The object of the investor is to find the optimal investment strategy π∗ such
that

V ε,π
∗
(t, x, y, z) = sup

π∈A
E
[
U(Xε,π

T )
∣∣Xε,π

t = x, Yt = y, Zt = z
]
.

and the optimal value function

V ε(t, x, y, z) = V ε,π
∗
(t, x, y, z).

In fact, the optimal value function is the value function corresponding to the
optimal investment strategy π∗.

Since our financial market model (Bt, St) is very complicated, it is impossible
to get the explicit forms of the optimal value function and the optimal investment
strategy. So we use a power series representation of V ε(t, x, y, z) in powers of

√
ε

given by

V ε(t, x, y, z) = V (0)(t, x, y, z) +
√
εV (1)(t, x, y, z) + εV (2)(t, x, y, z) + · · · , (1.10)

for any small positive parameter ε < 1. The aim of this paper is to give the
explicit form of the approximation V (0)(t, x, y, z) +

√
εV (1)(t, x, y, z) up to the

first order of
√
ε

The structure of this paper is as follows. In Section 2, we give an explicit form
of the leading order term V (0). In Section 3, we drive an explicit expression for
V (1) in terms of V (0) for the first time, which give us an explicit form of the
approximation V (0) +

√
εV (1) up to the first order . In Section 4, by using the

results in Section 3, we find an explicit form of the first order correction in a
power series representation of the optimal strategy in powers of

√
ε.
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2. The leading order term V (0)

In this section we give an explicit form of the leading order term V (0). In our
model, the Hamilton-Jacobi-Bellman (HJB) equation (cf. Øksendal [8]) for V ε is
given by, for t ∈ [0, T ], x ∈ R+, y ∈ R and z ∈ R+,

V εt +
z

ε
L0V

ε + rxV εx + κ(θ − z)V εz +
1

2
σ2zV εzz +

1√
ε
ρyzσα(y)zV εyz

+ sup
π

[
1

2
π2f2(y)zx2V εxx+πzx

(
µ(y)V εx + ρszσf(y)V εxz

+
1√
ε
ρsyα(y)f(y)V εxy

)]
= 0

(2.1)

where the terminal condition is given by

V ε(T, x, y, z) = U(x). (2.2)

Maximizing the quadratic expression in π, the optimal investment strategy is
given in feedback form by

π∗(t, x, y, z) = −
λ(y)V εx + ρszσV

ε
xz + 1√

ε
ρsyα(y)V εxy

f(y)xV εxx
, (2.3)

where λ is the function defined in (1.8). Substituting this optimal strategy into
(2.1) yields

V εt +
z

ε
L0V

ε + rxV εx + κ(θ − z)V εz +
1

2
σ2zV εzz +

1√
ε
ρyzσα(y)zV εyz

−
z
(
λ(y)V εx + ρszσV

ε
xz + 1√

ε
ρsyα(y)V εxy

)2

2V εxx
= 0. (2.4)

As in Fouque et al [2], we assume that the value function V ε(t, x, y, z) is strictly
increasing, strictly concave in x for each t ∈ [0, T ), y ∈ R and z ∈ R+, and is
smooth enough on the domain [0, T ]× R+ × R× R+. We also assume that it is
the unique solution for the HJB equation (2.1) with terminal condition (2.2).

We now use asymptotic analysis developed in [2] to obtain approximations to
the value function and optimal investment strategy for the HARA utility function
defined in (1.9).

Now we substitute the power series representation (1.10) into (2.4) and suc-
cessively group the terms by the powers of ε. Collecting the terms in ε−1, we
have

zL0V
(0) − 1

2
ρ2
syα

2(y)z

(
V

(0)
xy

)2

V
(0)
xx

= 0. (2.5)

Since all terms of the operator L0 in (1.5) take derivatives in y, we choose V (0)

to be independent of y so that the equation (2.5) is satisfied. It follows from this
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choice that V
(0)
y = 0, and then the expansion of (2.4) is given by

V
(0)
t +

√
εV

(1)
t + zL0

( 1√
ε
V (1) + V (2) +

√
εV (3)

)
+ rx

(
V (0)
x +

√
εV (1)
x

)
+κ(θ − z)

(
V (0)
z +

√
εV (1)
z

)
+

1

2
σ2z
(
V (0)
zz +

√
εV (1)
zz

)
+ρyzσα(y)z

(
V (1)
yz +

√
εV (2)
yz

)
−z
[
λ(y)

(
V (0)
x +

√
εV (1)
x

)
+ ρszσ

(
V (0)
xz +

√
εV (1)
xz

)
+ρsyα(y)

(
V (1)
xy +

√
εV (2)
xy

)]2 1

2V
(0)
xx

(
1−
√
ε
V

(1)
xx

V
(0)
xx

)
+ o(
√
ε) = 0, (2.6)

where o(x)/x goes to 0 as x→ 0. Hence, we see from (2.6) that there is only one

term in (
√
ε)
−1

, which leads to

L0V
(1) = 0. (2.7)

By the definition of L0, V (1) must be independent of y (otherwise, V (1) would

grow as much as ey
2/2 as y → ∞, which is not of interest). Using the fact that

V (0) and V (1) are independent of y, the constant terms in the equation (2.6) lead
to

zL0V
(2) + U = 0, (2.8)

where

U = V
(0)
t + rxV (0)

x + κ(θ − z)V (0)
z +

1

2
σ2zV (0)

zz −
z
(
λ(y)V

(0)
x + ρszσV

(0)
xz

)2

2V
(0)
xx

.

Viewing (2.8) as a Poisson equation for V (2) in y, the centering condition on
the source term is given by 〈

U
〉

= 0, (2.9)

where
〈
·
〉

is the averaging operator defined in (1.6). Then it follows that

V
(0)
t + rxV (0)

x + κ(θ − z)V (0)
z +

1

2
σ2zV (0)

zz −
1

2
λ̃2z

(
V

(0)
x

)2

V
(0)
xx

−ρszσλz
V

(0)
x V 0

zx

V
(0)
xx

− 1

2
ρ2
szσ

2z

(
V

(0)
zx

)2

V
(0)
xx

= 0, (2.10)

where we have used the fact that V (0) is independent of y and denoted λ = 〈λ〉
and λ̃ =

√〈
λ2
〉
. From (1.10), we have the terminal condition

V (0)(T, x, z) = U(x). (2.11)
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Observe that when λ(y) = λ, the nonlinear PDE (2.10) is the HJB equation
corresponding to the Heston model studied by [6]. We recall that [6] considered
the power utility functions.

The following theorem contains an explicit formula of V (0) that satisfies the
PDE (2.10) with terminal condition (2.11) for the HARA utility function. Since
the proof is similar to [2, 3, 4, 6, 11], here we omit it.

Theorem 2.1. For the HARA utility function U(x) given in (1.9), the PDE
(2.10) with the terminal condition (2.11) has an explicit solution

V (0)(t, x, z) =
1− p
pq

( q

1− p
xer(T−t) + η

)p
eA(t)+B(t)z, (2.12)

where the functions A(t) and B(t) are given as in the following cases:

Case 1: ∆ > 0.

A(t) =
κθ

σ2 (1 + Γρ2
sz)

[(
κ− Γρszσλ+

√
∆
)

(T − t)− 2 ln

(
1− ge(T−t)

√
∆

1− g

)]
,

(2.13)

B(t) =
κ− Γρszσλ+

√
∆

σ2
(

1 + Γρ2
sz

) (
1− e

√
∆(T−t)

1− ge
√

∆(T−t)

)
. (2.14)

Case 2: ∆ = 0 and TK + 1 > 0.

A(t) =
κθ

σ2
(

1 + Γρ2
sz

)[(κ− Γρszσλ
)
(T − t)− 2 ln

(
1 +

1

2

(
κ− Γρszσλ

)
(T − t)

)]
,

(2.15)

B(t) =

(
κ− Γρszσλ

)2
2σ2
(

1 + Γρ2
sz

)( T − t
1 + 1

2

(
κ− Γρszσλ

)
(T − t)

)
. (2.16)

Here, we define ∆, g,K and Γ by

∆ = κ2 − Γ(2κρszσλ+ σ2λ̃2) + Γ2ρ2
szσ

2
(
λ

2 − λ̃2
)
,

g =
κ− Γρszσλ+

√
∆

κ− Γρszσλ−
√

∆
,

K =
1

2

(
κ− Γρszσλ

)
,

Γ =
p

1− p
. (2.17)
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3. The first order term V (1)

In this section, we drive an explicit expression for V (1) in terms of V (0), which
give us an explicit form of the approximation V (0) +

√
εV (1) up to the first order .

From Theorem 2.1 we can get some useful properties about V (0) which are given
by the following remark.

Remark 1. (i) We can easily see from (2.12) that V (0) satisfies

V (0)
z (t, x, z) = B(t)V (0)(t, x, z) (3.1)

for all (t, x, z) ∈ [0, T ]×R+ ×R+. This particular property leads to the explicit
derivation of the first order correction term V (1) in terms of V (0).
(ii) From (2.12), we observe that the ratio V

(0)
x /V

(0)
xx does not depend on z, and

so we denote

R(t, x) = −V
(0)
x (t, x, z)

V
(0)
xx (t, x, z)

. (3.2)

Before continuing our asymptotic analysis, we define the differential operators
Dj by

Dj = Rj(t, x)
∂j

∂xj
, j = 1, 2, . . . , (3.3)

and the linear operator Lt,x,z(λ1, λ2) by

Lt,x,z(λ1, λ2) =
∂

∂t
+ rx

∂

∂x
+ κ(θ − z) ∂

∂z
+

1

2
σ2z

∂2

∂z2

+
(
λ2

1 + ρszσλ2B(t)
)
zD1 + ρszσ (λ2 + ρszσB(t)) zD1

∂

∂z

+
1

2

(
λ2

1 + 2ρszσλ2B(t) + ρ2
szσ

2B2(t)
)
zD2.

(3.4)

Then, by using of (3.1) direct computation shows that the equation (2.10) can
be written as

Lt,x,z
(
λ̃, λ

)
V (0) = 0. (3.5)

Similarly, we can rewrite (2.8) as

zL0V
(2) + Lt,x,z

(
λ(y), λ(y)

)
V (0) = 0. (3.6)

Then it follows from (3.5) and (3.6) that

L0V
(2) = −1

z

(
Lt,x,z

(
λ(y), λ(y)

)
− Lt,x,z

(
λ̃, λ

))
V (0). (3.7)

Hence, up to a constant in y, we choose

V (2) = −1

z
L−1

0

(
Lt,x,z

(
λ(y), λ(y)

)
− Lt,x,z

(
λ̃, λ

))
V (0), (3.8)

where L−1
0 is the inverse operator of L0.
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Now, we proceed asymptotic analysis to derive the first order term V (1). By
using (3.1), the terms in

√
ε of the expanded PDE (2.6) lead to

zL0V
(3) + V

(1)
t + rxV (0)

x + κ(θ − z)V (1)
z +

1

2
σ2zV (1)

zz + ρyzσα(y)zV (2)
yz

+
z

2V
(0)
xx

[(
λ(y) + ρszσB(t)

)2(
V (0)
x

)2V
(1)
xx

V
(0)
xx

−2
(
λ(y) + ρszσB(t)

)
V (0)
x

(
λ(y)V (1)

x + ρszσV
(1)
xz + ρsyα(y)V (2)

xy

)]
= 0. (3.9)

Then using (3.2) and (3.3), we can write (3.9) as

zL0V
(3) + Lt,x,z

(
λ(y), λ(y)

)
V (1) + zLx,y,zV (2) = 0, (3.10)

where the operator Lx,y,z is defined by

Lx,y,z = ρyzσα(y)
∂2

∂y∂z
+ ρsyα(y)

(
λ(y) + ρszσB(t)

)
R

∂2

∂x∂y
. (3.11)

Viewing (3.10) as a Poisson equation for V (3) in y, the centering condition requires
that 〈

Lt,x,z(λ(y), λ(y))V (1) + zLx,y,zV (2)
〉

= 0. (3.12)

Since V (1) does not depend on y and
〈
Lt,x,z

(
λ(y), λ(y)

)〉
= Lt,x,z

(
λ̃, λ̄

)
, we

deduce from (3.12) that

Lt,x,z
(
λ̃, λ

)
V (1) = −z

〈
Lx,y,zV (2)

〉
. (3.13)

Substituting V (2), given by (3.8) , into this equation yields

Lt,x,z(λ̃, λ)V (1) = AV (0), (3.14)

where

A := z

〈
Lx,y,z

1

z
L−1

0

(
Lt,x,z(λ(y), λ(y))− Lt,x,z(λ̃, λ)

)〉
.

We explicitly compute the source term of (3.14). To do this, we introduce two
functions φ and ψ that satisfy the following Poisson equations

L0φ(y) =
1

2

(
λ2(y)− λ̃2

)
, (3.15)

L0ψ(y) = λ(y)− λ. (3.16)
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We observe from (2.12) that D1V
(0) = ΓV (0), where Γ is defined in (2.17). Then,

we have

AV (0) = z

〈
Lx,y,z

1

z
L−1

0

(
1

2

(
λ2(y)− λ̃2

)
+ ρszσB(t)

(
λ(y)− λ

))
zD1V

(0)

〉
= zΓ

〈
Lx,y,zφ(y)V (0)

〉
+ ρszσB(t)zΓ

〈
Lx,y,zψ(y)V (0)

〉
= z

(
ρsyΓ2F3 + σΓ

(
ρyzF1 + ρsyρszΓ(F1 + F4)

)
B(t)

+ρszσ
2Γ
(
ρyz + ρsyρszΓ

)
F2B

2(t)

)
V (0), (3.17)

where the group parameters Fi are defined by

F1 =
〈
αφ′
〉
, F2 =

〈
αψ′

〉
, F3 =

〈
αλφ′

〉
, F4 =

〈
αλψ′

〉
. (3.18)

From the expansion (1.10), the PDE (3.14) has the terminal condition

V (1)(T, x, z) = 0. (3.19)

Up to now, we have shown that the first order term V (1) satisfies the linear
PDE (3.14) with the terminal condition (3.19). Many authors just gave a PDE
satisfied by V (1), but they were not able to provide the explicit formula for V (1)

in several types of market models (cf. [9], for example). In the following theorem,
we derive an explicit expression for V (1) in terms of V (0) for the first time, which
is the main result of this study.

Theorem 3.1. The linear PDE (3.14) with terminal condition (3.19) has a
solution of the form

V (1)(t, x, z) =
(
κθg1(t) + g2(t)z

)
V (0)(t, x, z), (3.20)

where V (0) is given in Theorem 2.1, and g1(t) and g2(t) are defined in the fol-
lowing cases:
Case 1: ∆ > 0.

g1(t) =
1

∆g
(

1− ge
√

∆(T−t)
)[c2 + (c0 + 2c1 + c2)g + c0g

2

+(c0 + c1 + c2)
√

∆g(T − t)−
(
c2 + (c0 + 2c1 + c2)g + c0g

2

−
(
c1 + 2c2 − (c0 − c2)g

)√
∆g(T − t)

)
e
√

∆(T−t)

]

−c2(1− g)2

∆g2
ln

(
1− ge

√
∆(T−t)

1− g

)
, (3.21)
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g2(t) =
1

√
∆
(

1− ge
√

∆(T−t)
)2

{
(c0 + c1 + c2)

−(c0 + c1 − c1g − c0g2)e
√

∆(T−t) +
(
c1 + 2c2 + (2c0 + c1)g)

)
×
√

∆(T − t)e
√

∆(T−t) − (c2 + c1g + c0g
2)e2

√
∆(T−t)

}
, (3.22)

c0 = ρsyΓ2F3, (3.23)

c1 = σΓ
(
ρyzF1 + ρsyρszΓ(F1 + F4)

)(κ− Γρszσλ+
√

∆

σ2
(

1 + Γρ2
sz

) )
, (3.24)

c2 = ρszσ
2Γ
(
ρyz + ρsyρszΓ

)
F2

(
κ− Γρszσλ+

√
∆

σ2
(

1 + Γρ2
sz

) )2

. (3.25)

Case 2: ∆ = 0 and TK + 1 > 0.

g1(t) =
1

6K3(1 +K(T − t))
{6c̄2(T − t) + 3

(
c̄2 − c̄0K2

)
K(T − t)2

−
(
c̄2 + c̄1K + c̄0K

2
)
K2(T − t)3} − c̄2

K4
ln
(
1 +K(T − t)

)
, (3.26)

g2(t) =
−1

6
(
1 +K(T − t)

)2 {6c̄0(T − t) + 3(c̄1 + 2c̄0K)(T − t)2

+2(c̄2 + c̄1K + c̄0K
2)(T − t)3}, (3.27)

c̄0 = ρsyΓ2F3, (3.28)

c̄1 = σΓ
(
ρyzF1 + ρsyρszΓ(F1 + F4)

) (κ− Γρszσλ
)2

2σ2
(

1 + Γρ2
sz

) , (3.29)

c̄2 = ρszσ
2Γ
(
ρyz + ρsyρszΓ

)
F2

((
κ− Γρszσλ

)2
2σ2
(

1 + Γρ2
sz

))2

. (3.30)

Here, F1, F2, F3 and F4 are given by (3.18), respectively. ∆, g,K and Γ are
defined as in Theorem 2.1.

Proof. Now, we try to find the solution V (1) of the PDE (3.14) with the terminal
condition (3.19) in the form

V (1)(t, x, z) =
(
κθg1(t) + g2(t)z

)
V (0)(t, x, z) (3.31)
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with g1(T ) = 0 and g2(T ) = 0. Substituting (3.31) into (3.14) and using (3.1)
and (3.5) yields

κθg′1 + zg′2 + κ(θ − z)g2(t) + σ2zB(t)g2(t) + ρszσΓ
(
λ+ ρszσB(t)

)
zg2(t)

= z

[
ρsyΓ2F3 + σΓ

(
ρyzF1 + ρsyρszΓ(F1 + F4)

)
B(t)

+ρszσ
2Γ
(
ρyz + ρsyρszΓ

)
F2B

2(t)

]
, (3.32)

where B(t) is defined as in Theorem 2.1.
Therefore, (3.32) is separable in z and we can split it into two ODEs

g′1(t) = −g2(t), (3.33)

g′2(t) + a(t)g2(t) = b(t), (3.34)

where the functions a(t) and b(t) are defined by

a(t) = σ2(1 + ρ2
szΓ)B(t) + (ρszσλΓ− κ), (3.35)

b(t) = ρsyΓ2F3 + σΓ(ρyzF1 + ρsyρszΓ(F1 + F4))B(t)

+ρszσ
2Γ
(
ρyz + ρsyρszΓ

)
F2B

2(t). (3.36)

The equation (3.34) can be solved by using the integral factor

w(t) = e−
∫ T
t
a(s)ds,

which leads to

g2(t) = −
∫ T

t

w(s)

w(t)
b(s)ds. (3.37)

Therefore, we study in two cases as follows:

• Case 1: ∆ > 0.

By making use of (3.35) and (2.14), direct computation gives

w(s)

w(t)
= exp

(
√

∆(s− t) + 2 ln
1− ge

√
∆(T−s)

1− ge
√

∆(T−t)

)
,

where g and ∆ are defined as in Theorem 2.1. Then it follows from (3.37) that

g2(t) = −
∫ T

t

e
√

∆(s−t)

(
1− ge

√
∆(T−s)

1− ge
√

∆(T−t)

)2

b(s)ds, (3.38)

We can write b(t) in (3.36) as

b(t) = c0 + c1

(
1− e

√
∆(T−t)

1− ge
√

∆(T−t)

)
+ c2

(
1− e

√
∆(T−t)

1− ge
√

∆(T−t)

)2

,
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where the constants c0, c1 and c2 are given by (3.23), (3.24) and (3.25), respec-
tively. Then, it follows from (3.38) and (3.33) that

g2(t) = −
(
c0I0(t) + c1I1(t) + c2I2(t)

)
, (3.39)

g1(t) = −
(
c0J0(t) + c1J1(t) + c2J2(t)

)
, (3.40)

where the functions I0(t), I1(t), I2(t), J0(t), J1(t) and J2(t) are defined by

I0(t) =

∫ T

t

e
√

∆(s−t)

(
1− ge

√
∆(T−s)

1− ge
√

∆(T−t)

)2

ds,

I1(t) =

∫ T

t

e
√

∆(s−t)

(
1− ge

√
∆(T−s)

1− ge
√

∆(T−t)

)2(
1− e

√
∆(T−s)

1− ge
√

∆(T−s)

)
ds,

I2(t) =

∫ T

t

e
√

∆(s−t)

(
1− ge

√
∆(T−s)

1− ge
√

∆(T−t)

)2(
1− e

√
∆(T−s)

1− ge
√

∆(T−s)

)2

ds,

Ji(t) =

∫ T

t

Ii(s)ds, i = 0, 1, 2.

Direct computation leads to

I0(t) =
e
√

∆(T−t)
((

1− e−
√

∆(T−t)
)
− 2g

√
∆(T − t)− g2

(
1− e

√
∆(T−t)

))
√

∆
(

1− ge
√

∆(T−t)
)2 ,

(3.41)

I1(t) =

e
√

∆(T−t)
((

1− e−
√

∆(T−t)
)
− (1 + g)

√
∆(T − t)− g

(
1− e

√
∆(T−t)

))
√

∆
(

1− ge
√

∆(T−t)
)2 ,

(3.42)

I2(t) =

e
√

∆(T−t)
((

1− e−
√

∆(T−t)
)
− 2
√

∆(T − t)−
(

1− e
√

∆(T−t)
))

√
∆
(

1− ge
√

∆(T−t)
)2 ,

(3.43)
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J0(t) = −
1 + g +

√
∆(T − t)−

(
1 + g −

√
∆g(T − t)

)
e
√

∆(T−t)

∆
(
1− ge

√
∆(T−t)

) , (3.44)

J1(t) = −
2 +
√

∆(T − t)−
(
2−
√

∆(T − t)
)
e
√

∆(T−t)

∆
(
1− ge

√
∆(T−t)

) , (3.45)

J2(t) = −
1 + g +

√
∆g(T − t)−

(
1 + g − (2− g)

√
∆g(T − t)

)
e
√

∆(T−t)

∆g
(
1− ge

√
∆(T−t)

)
+

(1− g)2

∆g2
ln

(
1− ge

√
∆(T−t)

1− g

)
. (3.46)

Then, by substituting (3.41), (3.42), (3.43) in (3.39), and (3.44), (3.45), (3.46) in
(3.40) we easily see that g2(t) and g1(t) are given by (3.22) and (3.21), respec-
tively.

• Case 2: ∆ = 0 and TK + 1 > 0.

By similar calculation to Case 1, we get

w(s)

w(t)
= exp

{
2 ln

(
(1 + 1

2 (κ− ρszσλΓ)(T − s))
(1 + 1

2 (κ− ρszσλΓ)(T − t))

)}
.

Then (3.37) is equivalent to

g2(t) = −
∫ T

t

(
1 +K(T − s)
1 +K(T − t)

)2

b(s)ds, (3.47)

where K = 1
2

(
κ− Γρszσλ

)
. We can write b(t) in (3.36) as

b(t) = c̄0 + c̄1
T − t

1 +K(T − t)
+ c̄2

(
T − t

1 +K(T − t)

)2

,

where the constants c̄0, c̄1 and c̄2 are defined by (3.28),(3.29) and (3.30), respec-
tively. Then, it follows from (3.47) and (3.33) that

g2(t) = −
(
c̄0Ī0(t) + c̄1Ī1(t) + c̄2Ī2(t)

)
, (3.48)

g1(t) = −
(
c̄0J̄0(t) + c̄1J̄1(t) + c̄2J̄2(t)

)
, (3.49)



14 J.H. KIM AND S. VENG

where the functions Ī0, Ī1, Ī2(t), J̄0(t), J̄1(t) and J̄2 are defined by

Ī0(t) =

∫ T

t

(
1 +K(T − s)
1 +K(T − t)

)2

ds,

Ī1(t) =

∫ T

t

(
1 +K(T − s)
1 +K(T − t)

)2
T − s

1 +K(T − s)
ds,

Ī2(t) =

∫ T

t

(
1 +K(T − s)
1 +K(T − t)

)2(
T − s

1 +K(T − s)

)2

ds,

J̄i(t) =

∫ T

t

Īi(s)ds, i = 0, 1, 2.

Direct computation shows that

Ī0(t) =
1(

1 +K(T − t)
)2 ((T − t) +K(T − t)2 +

K2

3
(T − t)3

)
, (3.50)

Ī1(t) =
1(

1 +K(T − t)
)2 (1

2
(T − t)2 +

K

3
(T − t)3

)
, (3.51)

Ī2(t) =
(T − t)3

3
(
1 +K(T − t)

)2 , (3.52)

J̄0(t) =
(T − t)2(3 +K(T − t))

6
(
1 +K(T − t)

) , (3.53)

J̄1(t) =
(T − t)3

6
(
1 +K(T − t)

) (3.54)

and

J̄2(t) =
−6(T − t)− 3K(T − t)2 +K2(T − t)3

6K3
(
1 +K(T − t)

) +
1

K4
ln
(
1 +K(T − t)

)
. (3.55)

Then, by plugging (3.50), (3.51), (3.52) in (3.48), and (3.53), (3.54), (3.55) in
(3.49) we find that g2(t) and g1(t) are given by (3.27) and (3.26), respectively.
The proof is complete.

�

4. An explicit approximation of the optimal strategy

Since we have derived the first two terms V (0) and V (1) for the optimal value
function in the previous section, we can proceed to derive an asymptotic approx-
imation to the optimal strategy π∗ given by (2.3). Like the case of the optimal
value function, we look for the optimal strategy π∗ of the form

π∗(t, x, y, z) = π∗(0) +
√
επ∗(1) + επ∗(2) + · · · , (4.1)

and we are interested to derive expressions for the first two terms, π∗(0) and π∗(1).
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Substituting the expansion (1.10) for V ε into (2.3) gives

π∗ =

(
λ(y) + ρszσB(t)

)
R(t, x)

f(y)x
+

√
ε

f(y)xV
(0)
x

[(
λ(y) + ρszσB(t)

)
D2V

(1)

+ λ(y)D1V
(1) + ρszσD1V

(1)
z − ρsyα(y)

(
φ′(y) + ρszσB(t)ψ′(y)

)
D2

1V
(0)

]
+ · · · .

Here, we have used the fact that V
(0)
z = B(t)V (0). Using the explicit expressions

of V (0) and V (1) given respectively in Theorem 2.1 and Theorem 3.1 and the fact
that D2V

(0) = −D1V
(0), we have the following asymptotic result for the optimal

strategy.

Theorem 4.1. The first order correction of the optimal strategy π∗(t, x, y, z) is

π̃∗ = π∗(0) +
√
επ∗(1),

where π∗(0) and π∗(1) are given by

π∗(0) =
1

qf(y)

(
λ(y) + ρszσB(t)

)( q

1− p
+
ηer(t−T )

x

)
,

π∗(1) =
ρszσg2(t)− Γρsyα(y)

(
φ′(y) + ρszσB(t)ψ′(y)

)
qf(y)

(
q

1− p
+
ηer(t−T )

x

)
.
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