• Title/Summary/Keyword: Mathematical Models

Search Result 1,784, Processing Time 0.028 seconds

Teaching-Learning Method for Plane Transformation Geometry with Mathematica (평면변환기하에 있어서 Mathematica를 이용한 교수-학습방법)

  • 김향숙
    • The Mathematical Education
    • /
    • v.40 no.1
    • /
    • pp.93-102
    • /
    • 2001
  • The world we live in is called the age of information. Thus communication and computers are doing the central role in it. When one studies the mathematical problem, the use of tools such as computers, calculators and technology is available for all students, and then students are actively engaged in reasoning, communicating, problem solving, and making connections with mathematics, between mathematics and other disciplines. The use of technology extends to include computer algebra systems, spreadsheets, dynamic geometry software and the Internet and help active learning of students by analyzing data and realizing mathematical models visually. In this paper, we explain concepts of transformation, linear transformation, congruence transformation and homothety, and introduce interesting, meaningful and visual models for teaching of a plane transformation geomeoy which are obtained by using Mathematica. Moreover, this study will show how to visualize linear transformation for student's better understanding in teaching a plane transformation geometry in classroom. New development of these kinds of teaching-learning methods can simulate student's curiosity about mathematics and their interest. Therefore these models will give teachers the active teaching and also give students the successful loaming for obtaining the concept of linear transformation.

  • PDF

Model Classification and Evaluation of Measurement Uncertainty (측정 불확도 모형 분류 및 평가)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.1
    • /
    • pp.145-156
    • /
    • 2007
  • This paper is to propose model classification and evaluation of measurement uncertainty. In order to obtain type A and B uncertainty, variety of measurement mathematical models are illustrated by example. The four steps to evaluate expanded uncertainty are indicated as following; First, to get type A standard uncertainty, measurement mathematical models of single, double, multiple, design of experiment and serial autocorrelation are shown. Second, to solve type B standard uncertainty measurement mathematical models of empirical probability distributions and multivariate are presented. Third, type A and B combined uncertainty, considering sensitivity coefficient, linearity and correlation are discussed. Lastly, expanded uncertainty, considering degree of freedom for type A, B uncertainty and coverage factor are presented with uncertainty budget. SPC control chart to control expanded uncertainty is shown.

APPROXIMATION FORMULAS FOR SHORT-MATURITY NEAR-THE-MONEY IMPLIED VOLATILITIES IN THE HESTON AND SABR MODELS

  • HYUNMOOK CHOI;HYUNGBIN PARK;HOSUNG RYU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.3
    • /
    • pp.180-193
    • /
    • 2023
  • Approximating the implied volatilities and estimating the model parameters are important topics in quantitative finance. This study proposes an approximation formula for short-maturity near-the-money implied volatilities in stochastic volatility models. A general second-order nonlinear PDE for implied volatility is derived in terms of time-to-maturity and log-moneyness from the Feyman-Kac formula. Using regularity conditions and the Taylor expansion, an approximation formula for implied volatility is obtained for short-maturity nearthe-money call options in two stochastic volatility models: Heston model and SABR model. In addition, we proposed a novel numerical method to estimate model parameters. This method reduces the number of model parameters that should be estimated. Generating sample data on log-moneyness, time-to-maturity, and implied volatility, we estimate the model parameters fitting the sample data in the above two models. Our method provides parameter estimates that are close to true values.

ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS

  • Jin, Hyeonseong
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.11-27
    • /
    • 2014
  • In this paper, we propose closures for multi-phase flow models, which satisfy boundary conditions and conservation constraints. The models governing the evolution of the fluid mixing are derived by applying an ensemble averaging procedure to the microphysical equations characterized by distinct phases. We consider compressible multi species multi-phase flow with surface tension and transport.

Mathematical Models of a Transformer Cooling System for the Control Algorithm Development (제어알고리즘 개발을 위한 변압기 냉각시스템의 수학적모델)

  • Han, Do-Young;Noh, Hee-Jeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • In order to improve the efficiency of a main transformer in a train, the optimal operation of a cooling system is necessary. For the development of optimal control algorithms of a cooling system, mathematical models of a main transformer cooling system were developed. These include static and dynamic models of a main transformer, an oil pump, an oil cooler, and a blower. Static models were used to find optimal oil temperatures of the inlet and the outlet of a transformer. Dynamic models were used to predict transient performances of control algorithms of a blower and an oil pump. Simulation results showed good predictions of the static and the dynamic behavior of a main transformer cooling system. Therefore, mathematical models developed in this study may be effectively used for the development of control algorithms of a main transformer cooling system.

Drawbead Model for 3-Dimensional Finite Element Analysis of Sheet Metal Forming Processess (3차원 박판형성 공정 유한요소해석용 드로우비드 모델)

  • 금영탁;김준환;차지혜
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.394-404
    • /
    • 2002
  • The drawbead model for a three-dimensional a finite element analysis of sheet metal forming processes is developed. The mathematical models of the basic drawbeads like circular drawbead, stepped drawbead, and squared drawbaed are first derived using the bending theory, belt-pulley equation, and Coulomb friction law. Next, the experiments for finding the drawing characteristics of the drawbead are performed. Based on mathematical models and drawing test results, expert models of basic drawbeads are then developed employing a linear multiple regression method. For the expert models of combined drawbeads such as the double circular drawbead, double stepped drawbead, circular-and-stepped drawbead, etc., those of the basic drawbeads are summed. Finally, in order to verify the expert models developed, the drawing characteristics calculated by the expert models of the double circular drawbead and circular-and-stepped drawbead are compared with those obtained from the experiments. The predictions by expert models agree well with the measurements by experiments.

Mathematical Modeling of Zone Drawing Process

  • Kim, Hyungsup;Cho, Kwang-Soo;Ji, Byung-Chul
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.206-212
    • /
    • 2004
  • To provide guidelines and a basic understanding of static and continuous zone drawing processes, we propose two different mathematical models in terms of the processing conditions and material parameters. Although the models are not finely tuned, because of assumptions made, they are still useful for the analysis of the process and for predicting the processibility.

GLOBAL STABILITY ANALYSIS FOR A CLASS OF COHEN-GROSSBERG NEURAL NETWORK MODELS

  • Guo, Yingxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1193-1198
    • /
    • 2012
  • By constructing suitable Lyapunov functionals and combining with matrix inequality technique, a new simple sufficient condition is presented for the global asymptotic stability of the Cohen-Grossberg neural network models. The condition contains and improves some of the previous results in the earlier references.

SOME MODELS FOR PROGRESSIVE TAXATION

  • Kim, Hong-Jong
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.823-831
    • /
    • 2018
  • We define progressive tax rate functions, study their properties, and describe some smooth models. The key requirement, defining the progressive nature of the taxation model, is that the progressive tax rate functions should have infinite contact with the zero function at the origin, in order to care the poor. In constructing a wide array of such functions, assisting functions are introduced.

TRAFFIC FLOW MODELS WITH NONLOCAL LOOKING AHEAD-BEHIND DYNAMICS

  • Lee, Yongki
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.987-1004
    • /
    • 2020
  • Motivated by the traffic flow model with Arrhenius looka-head relaxation dynamics introduced in [25], this paper proposes a traffic flow model with look ahead relaxation-behind intensification by inserting look behind intensification dynamics to the flux. Finite time shock formation conditions in the proposed model with various types of interaction potentials are identified. Several numerical experiments are performed in order to demonstrate the performance of the modified model. It is observed that, comparing to other well-known macroscopic traffic flow models, the model equipped with look ahead relaxation-behind intensification has both enhanced dispersive and smoothing effects.