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Mathematical Modeling of Zone Drawing Process
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Abstract: To provide guidelines and a basic understanding of static and continuous zone drawing processes, we
propose two different mathematical models in terms of the processing conditions and material parameters. Although
the models are not finely tuned, because of assumptions made, they are still useful for the analysis of the process and

for predicting the processibility.
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Introduction

Zone drawing process has been studied as a method to
impart superior mechanical properties to fibers or films pro-
duced from polymers. When fiber or film has been heated
locally by heat band under applied load, the heated part of
the specimen will be stretched. With the extension, the
degree of polymer chain orientation in the heated zone will
be increased depending on the processing condition and
material properties. When the polymer chain is flexible and
the heating time is long enough to transfer heat from the
band to the material, the chain will be fully extended. As a
result, the polymer obtains high strength and high modulus.

To reveal the relations between the processing conditions
and the polymer structural change, zone drawing was applied
to various polymers such as polyolefins, nylon, polyester,
PVA and so on."" The researches found that degree of ori-
entation in amorphous region changed significantly during
the process. These structure changes result in the zone-
drawn polymers. Although these researches showed that
zone drawing is one of the most effective methods to create
high performance polymers, the process has not been
employed in fiber manufacturing due to low speed and
batch type process. Recently, continuous zone drawing pro-
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cess has been developed and researched focused on the pro-
cessibility, polymer structural change and the mechanical
properties of the products.'>'s

However, the process mechanism has not been studied
theoretically in terms of material properties and the process-
ing conditions. In this study, we establish theoretical models
for static and continuous zone drawing processes using heat
transfer analysis and constitutive models for polymers.
Although the models are not fine tuned, they are expected to
provide the guideline and basic understanding of the pro-
cesses. In addition, the models can be used to predict the
mechanical properties of the resulted fiber or film by calcu-
lating the inherent draw ratio using the process conditions
and material parameters.

Models

In this study, we propose two different theoretical models
according to zone drawing mechanism; one is for static pro-
cess and the other is for continuous process. In static pro-
cess, one end of polymer film or fiber is fixed and constant
load is applied at the other end. The heat band moves along
the specimen with a constant speed. In continuous process,
the specimen moves between two fixed points separated by
the length L with increasing velocity from v, to v;. The heat
band is located between the two fixed points.

Static Process. The schematic diagram of the static pro-
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cess is shown in Figure 1. Although this process is not suit-
able for mass production, it is still useful to understand the
effect of the processing conditions on the physical proper-
ties of the product. In this study, we develop a model using
heat transfer analysis and rheological concepts.

To simplify the process, the followings are assumed.

(1) Heat transfer along the specimen is negligible. Only
heat transfer is along the thickness direction of the specimen.

(2) Plastic deformation does not occur where the heat
band does not contact. Outside of heating zone, deformation
is recoverable because the specimen deforms like elastic
body. The only area of specimen heated by the heat band is
plastically drawn.

From the assumption 1, heat transfer during the process is
one-dimensional phenomenon. Thus, we have the solution
as follows:

o0 n+1
T= TH—2(TH—T0)2(_1B) exp(—ﬂ;r)cos%’x (1)
n=0 n

2n—1
Bn - 2

m,and T= %’t 2)

where T}, is the processing temperature (the temperature
of the heat band), 7, is the temperature of the specimen
before heating, T is the temperature of the part of the speci-
men during heating, b is the half of the thickness of the
specimen, Dyis the thermal diffusion constant of the material
which can be expressed in terms of the density p, the heat
capacity C,, and thermal conductivity of the material as fol-
lows:

Fiber

Heat Source

Constant. Load

Figure 1. The geometry of static zone-drawing process.
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Dy = ;C_p (3)

Since the heat band moves with constant speed Vy and
width of the heat band is w, every part of specimen is heated
for heating time t, which can be expressed by

ty=— 4

n=y 4)

In order to simplify the problem, we consider the average
temperature at x = 0 as follows:

— —_I‘IH
I= [1(2,0)ar (5)

Hy

It is convenient to consider T as a processing variable
because diameter of fiber (or thickness of film) is extremely
small compared to the specimen length. Substitution of eq.
(1) into eq. (5) yields

_ _ 2 o (_1 )n+ i
T= TH—;;(TH” Tl))'; B, o ©)
where
Ty D 2 2D
el 825) o ol 2] 0
0 nH

The average temperature depends on the heat band speed.
The high speed case is not taken into account because the
specimen would not be drawn as a result of insufficient heat
transfer.

If the heat band speed is slow enough that the specimen
can be heated for sufficient time, the average specimen tem-
perature will be equilibrate to the heat band temperature.

2

T=T,- 2b°¢

t HD H

(Ty-Ty)=Ty 8)

where

- o0 (_1)n+]
R

It is because

DH[H
S » 1

When the heating time, ¢, is moderately short, then Dytib?
=~1. As aresult, we have

B [BDuy. 1(BDa \T_ 18D
f"NﬁiDH[ b’ t”-Z( b’ I””_I”@Y b’ t”) ®
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Thus, the average temperature is

— co n+1 ZDH
T=Ty-ATy-Tp T &2 (1—1ﬁ" r,,)
n=1

B, 2y (10)
=To+ (Ty~-To)ty@
where
— n+ ﬁnDH
=Y ()= (11)
¢ 21 ) b

This case makes the problem more complicate because
material parameters such as viscosity and modulus become
a function of the heat band speed through the average tem-
perature. Furthermore, we have to use more complicate vis-
coelastic constitutive equation in this case of moderately
short heating time. To make the problem simpler, we only
consider only the case where the heating time is long.

The plastic strain rate of the static zone drawing is given
by

- dlogl

¢ ="K (12)

Because the plastic deformation is occurred only when
the heat band contacts the specimen, draw ratio would be
expressed as a function of heating time, #

Iy

logA = [é,(t)dr (13)
0

where A is draw ratio. If heat transfer is efficient enough
that the average specimen temperature 7 is very close to Ty,
the following constitutive equation can be used

6p=—2
? Ne(Ty)

where 1,(T) is the elongational viscosity of polymer.
The elongational viscosity is nearly independent of strain
rate if the polymer does not show any strain hardening. It is
notable that temperature dependence of viscosity usually
follows the Arhenious equation such that

(14)

Me(T) = Mu(T pexp( 15)

Since stress is constant in this process and specimen tem-
perature can be represented in terms of the average tempera-
ture T during the drawing process, substitution of eq. (14)
into eq. (13) yields

o _w o
Ne(Ty)  Vune(Ty)

logA=t, (16)

Although this calculation is based on crude approxima-
tions, eq.(16) shows how the process variables such as
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applied stress, the heat band speed and the processing tem-
perature affect on the draw ratio in a qualitative way. Includ-
ing correction to the errors due to crude approximation, we
can rewrite eq. (16) as follows:

o :

A f[aV(VH)aT(TH)] (n

where f(x) is a function which may be determined by

experiment, ay(Vy) is the shift factor due to the heat band

speed, and a(T,) is the shift factor due the processing

temperature. From eq. (16), we know that the shift factors
have following functional forms:

ay(Vy) = c(Vy-ViH+1 (18)
Ne(Ty)

ap(Ty) = 22 (19)

S

where ¢ is a constant and Vj{ and T} are, respectively,
speed and temperature of the heat band at reference condi-
tion. Eq. (17) indicates that all data of draw ratio measured
at different process conditions can be put on a single curve
when it is plotted against the following shifted stress:

_ (o2
= a(Va)adT,) (20

It is noteworthy that the constant ¢ is independent of
materials because it depends on geometry of heat band. On
the other hand, the shift factor a, is a material function of
temperature.

Continuous Process. Figure 2 illustrates the schematic
diagram of continuous zone-drawing process. In the process,
specimen is supplied from the left side rollers with speed of
vo and exit through the right side rollers with speed of v,.
Before specimen enters the heating zone (zone II), the tem-
perature of the specimen is assumed to be the ambient tem-
perature, Ty. In the zone I, the specimen deforms like elastic
solid and the deformation is recoverable. In the zone 11, the
temperature of the specimen rapidly elevates up to the pro-

Heat Source

e

Zone Il

v]
z= 1L

|
z=0

Figure 2. The geometry of continuous zone-drawing process.
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cessing temperature T, which allows the specimen to
deform like Newtonian fluid at isothermal condition. In the
zone III, two scenarios are possible. The one is that efficient
cooling drops the fiber temperature quickly at constant low
temperature. In this case, the fiber deforms like isothermal
elastic solid again. The other case is that the specimen is
cooled down without any cooling device. In this case, fiber
deforms like non-isothermal viscoelastic material. Tempera-
ture after the heating zone may be evolved by following
equation:

dT
77 = MTo=1) 2y

where 4 is a heat transfer coefficient and Ty is the ambient
temperature. The time derivative in eq. (21) is the material
time derivative such that

d_9d,,.
S=svV (22)

This research was only focused on the first case that heating
and cooling is so immediate that fiber deforms elastically in
the outside of the heating zone.

For the analysis of continuous process, we assume that the
fiber is cylindrical and axially symmetric. We also assume
that velocity field is

v=v.(k (23)

and fiber is incompressible. Thus, incompressibility gives
the mass balance equation as follows

VADR'(2) = voR; (24)
where R, is the radius of fiber at z=0. Since we use cylin-

drical coordinates, the momentum balance equation for the
Z-component is

(3\/ ov, v38v1 8\1 )
P o a8 e
(25)
Torort 9 0

The assumptions for symmetry and the velocity field lead
eq. (25) to

dv. 19 90,
pV:E - ra’_( r) + &Z (26)

In the zone II, since the fiber becomes an isothermal New-
tonian fluid, we can use the solution of isothermal spinning
process with Newtonian fluid. Neglecting the inertia term,
we have
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v.(z) = Bexp(az) 7

We use boundary conditions such that

v(z;) =V
{21) = v 28)
VZ(ZZ) =V
Then the constants ¢ and f§ are given by
_log(vy/vi) _ log(vy/vy)
B 27— w
4 (29)
zlog(vo/v vy *
b L) 2

We have to determine the two velocity v; and v, in terms
of measurable process variables. These quantities can be
determined by continuity of stress. In the zone I, since fiber
is elastic, we have

Gzz(z) = E(TO)ezz(Z) (30)
where E(T,) is the Young’s modulus at temperature T

and e_(z) is the strain given by

e = [éudt = je'.;dz logvd = log V(Z) G1)
0

v, T dz
v,

On the other hand, stress at z=z; and z=2z, can be calculated
in the zone II. Since the strain rate at the two positions are
given by

P blogv—2
Oliee, W Vi
(32)
iv_: = V—zlogv—z
aZ = w Vi
we have
v %
0.(z2)) = TIE(TH);llOg\‘f
(33)
1% 1%
Gz:(ZZ) = T)E(TH)—Zlog_z
wo T,
From egs. (30) and (32), at z=z,, we have
Vi Vi Vs
=, —og—2 4
E(Ty)logy! = 1T log: (34)

Now, we consider the case that cooling device is so effi-
cient that temperature of the zone III is nearly the ambient
temperature, 7;. Thus, we can consider the fiber as elastic
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body again. Since the fiber is melted in the zone II, the
strain should be

v.(z)

Vo

€= ,[e.:f-iv_z + Ef: = log + ef— (35)
0 <

where e’ is the residual strain that survives after fiber
passes the zone II. Thus, we have another continuity equa-
tion for stress at z=2z,

v Vs
E(To)es, = Ne(T); log 2 (36)
1

We can measure the take-up force F at z=L, which is
given by

F= nRiE(TO)(log:—L + ef,_)

(37)
= T2R2E( TO)(logv—L + eﬁ)
Vi V2
From eq. (37) we can determine the residual strain:
of = —F T yogt (38)
TRLE(T,)Vo Va
Substitution of eq. (38) into eq. (36) gives
(T 2l0g?2 = LV BT )og 2t (39)
el w gvl—n'R(z,Vo 0 gV2

Now we can determine the unknown velocities v, and v,.
By combining egs. (34) and (39), we have

10g1~12=(l +~§)log\~), 40)
Vi
{’)2 -~ ’\;2 -~
(——1)logv2=-—logvl+e(,/la—1og)g, (41)
¢ S
where
vi=2 fori=1and?2 42)
Vo
g=—t (43)
TRLE(Ty)
A=t 44
Vo
E(Ty)w
=07 45
é Ne(Ty)vo @)

It is noteworthy that g, corresponds to an average strain
that holds along the fiber, & corresponds to the Deborah num-
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ber which is the ratio of processing time scale to relaxation
time of materials.
Combining egs. (40) and (41), we have

vy =0 (46)
where

o=, ~logA, @7
) =(;?a'—§—l)log;1 48

If e® = log(v,/v,) then we have
F= nE(TO)Rilog:—L (49)
0

and ¢=0. Since to solve eq. (46) for ¢ ¥ 0 is difficult, we
assume that ¢=0 because we guess ¢ is very close to zero.
Then, the problem becomes simple:

A (50)

Vi

Results and Discussion

In the static process, we predicted that all data of draw
ratio obtained at different conditions can be superposed on a
single curve just as the linear viscoelastic data are superposed
by the WLF shift factor. This kind of superposition is well
known as the similarity transform or mechanical similarity
in the society of mechanics. There are a lot of examples of the
mechanical similarity in fluid mechanics, celestial mechanics
and so on."”"® Eq. (16) can be obtained by dimensional analy-
sis for the mechanical similarity, under the assumption that
the draw ratio depends on the width and the speed of heat
band, applied stress, viscosity of the specimen and tempera-
ture. Since the draw ratio is dimensionless and there are 4
basic dimensions (length, time, mass and temperature) and
5 governing variables mentioned above, Il-theorem leads
that the draw ratio is a function of a single dimensional
variable obtained by the combination of the 5 governing
variables. Since we derived the eq. (16) by use of mechanics,
we omit the derivation by the dimensional analysis.

We modified w/V,; into 1/a, of eq. (18) because the eq.
(16) was derived based on the assumption that heat transfzr
occurs only along the direction of thickness of the film (or
radius of fiber). In fact, heat transfer along the drawing
direction is also important because an immediate cooling at
the boundary of heat band cannot be achieved in real system.
However, eq. (16) is a good approximation because contri-
butions from the magnitudes of the important variables are
included in the equation. We expect that more sophisticate
calculation should have the leading term. In eq. (16), hidden
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assumption is that the specimen thickness is nearly uniform
in the heating zone. Although variation of the specimen
thickness in the heating zone exists, it does not alter the
functional form of eq. (16) too much. Thus, we believe that
eq. (17) is very useful to identify the behavior of the static
zone drawing process with small number of experiments.

From the help of egs. (40) and (50), we find that the con-
tinuous model is independent of apparent draw ratio, because
drawing occurs mainly in the heating zone and all deformation
in the outside of the heating zone is elastic and recoverable.
Since heating and cooling in this model are so immediate,
inherent draw ratio defined by A=v,/v, is independent of
both the position of the heating zone and the distance
between the two rollers as well as of the apparent draw ratio
A.. However, we need to notice that the inherent draw ratio,
A can not be greater than the apparent draw ratio A,. The
condition A > A, implies that disconnection of fiber after
passing the heating zone.

Egs. (40) and (50) imply that the inherent draw ratio is a
function of only the dimensionless parameter & which is a
ratio of time scale of heating w/v, to that of material proper-
ties N (Ty)/E(T,) . This number is the normalized time for
extension in the heating zone where fiber behaves like fluid.
The normalization, of course, implies the one for materials
and processing conditions.

The symbols in Figure 3 are solutions of (40) and (50)
with changing the value of v, and the line is the result of the
regression analysis. Figure 3 shows the inherent draw ratio

5
L =03879 £ + 1.046
#* = 0.999996 °
4 —
—_ ‘D/(
- .
3 -
il
< ,O"
2+ ]
O
o
1 1 1 ! 1
0 2 4 6 8 10

é\.ﬁ

Figure 3. The inherent draw ratio as a function of the dimension-
less parameter £ The calculation (the symbols) was done by use
of following assumed data: E(T,)= 10" Pa; n.(T,;)=10"Pa- sec;
w =1 cm. The line indicates the regression results from the cal-
culated data.
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as a function of the dimensionless parameter &. This graph
implies that A is a linear function of &', Including the
numerical errors, we can guess that the linear function must
be

A=0398"+1 (51)

Since drawing without disconnection or other instability
must satisfy A<A,, we can say that acceptable processing
condition should be

1

5s;z(%3‘—91)” 52)

where £ is the critical Deborah number. By using eq. (45),
it is straightforward that we can rewrite eq. (52) in terms of
processing variables as well as material variables.

Although our model is useful to find acceptable process
window with small number of experiments, it is impossible
to analyze the stability conditions when the roller speed is
increased too high for high production rate. As the roller
speed increases, it is clear that there must be an instability
such as draw resonance because of vibration of roller, non-
linearity of material properties and so on. In order to analyze
the high speed process, we need more sophisticate constitu-
tive equations for each zone as well as more detailed analysis
for heat transfer.

Conclusions

Depending on the mechanism of the process, two mathe-
matical models for zone drawing process have been developed
in terms of processing condition and material properties.
The mathematical models can predict the behavior of the
processes and give a guideline for the limit of acceptable
conditions and a tool for analysis of experimental data.

Most papers on the relationship between physical properties
of zone-drawn polymer and process conditions, lead to the
result that the physical properties mainly depends on the
orientation of polymer chains or crystals and the orientation
is a function of draw ratio. However, they did not find a simple
relationship between the draw ratio and process conditions.
Our model for the static zone drawing provides the universal
behavior of draw ratio, which puts all data of draw ratio
measured at different conditions on a single curve. It can be
called stress-temperature-heat band speed superposition.

In the continuous zone drawing, it is important to find an
acceptable processing conditton that must be changed as
different materials are used. Our model for the continuous
process provides the limit of the acceptable processing
condition. Furthermore, the model also provides an insight
that the inherent draw ratio can be expressed in a simple
form, other words, as a function of a dimensionless parameter
called Deborah number defined in this study.
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