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SOME MODELS FOR PROGRESSIVE TAXATION

Hong-Jong Kim

Abstract. We define progressive tax rate functions, study their proper-

ties, and describe some smooth models. The key requirement, defining

the progressive nature of the taxation model, is that the progressive tax
rate functions should have infinite contact with the zero function at the

origin, in order to care the poor. In constructing a wide array of such
functions, assisting functions are introduced.

1. Progressive tax rate functions

Historically, progressive taxation has been used as early as 6th century BC
[2]. In practice, it is a rather complicated problem and there are many philo-
sophical questions. We deal only with simple and ideal situations. A progressive
tax rate function, which will be defined soon, has the graph which looks like
Fig. 1.
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Fig. 1: The tax rate approaches 1 as income (x) approaches ∞.

Definition. A function f : R→ R is a progressive tax rate function, or simply
a T-function, if it has the following properties: (0) 0 ≤ f(x) < 1.

(i) f(x) = 0 when x ≤ 0, and f(x) > 0 when x > 0.
(ii) f(x) is an increasing function when x > 0.
(iii) lim

x→∞
f(x) = 1.

(iv) f(x) is convex when 0 < x < 1, and f(x) is concave when x > 1.
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(v) The net income function

g(x) := x(1− f(x)) (x > 0)

is an increasing function.

In the definition of a T-function, the variable x means the total income of
a person for a certain period. The property (0) follows from other properties
(i)∼(iii). The property (i) says that “No positive income, no tax. Any positive
income, some tax.” If we want “Small income, no tax”, then we may adjust
the property (i) by translating the function f(x). In (ii) and (v), “increasing”
means “strictly increasing”. The property (iv) fixes the unit x1 = 1 as the
inflection point of f . The inflection value

y1 := f(x1)

depends on various models. We will discuss some tithing models which use the
traditional value y1 = 1/10. The next proposition is trivial.

Proposition 1.1. The space of T-functions is convex, i.e., if f0(x) and f1(x)
are T-functions, then

ft(x) := (1− t)f0(x) + tf1(x) (0 ≤ t ≤ 1)

are all T-functions.

Many countries use step functions, which depend on sequences

0 = y0 < y1 < y2 < y3 < · · · → 1

and tax brackets x1, x2, x3, . . . of discontinuity. These discontinuous functions
are not suitable because they have sudden changes which cause some trouble
[Fig. 2].
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Fig. 2: A step function and a piecewise-linear function

One may consider piecewise-linear continuous models. But such models do
not care much for persons with low income. For these reasons, we consider
smooth models:

(vi) f(x) is (continuous and) smooth (C∞).

Since we are assuming that f(x) = 0 for x ≤ 0, this smoothness condition
is equivalent to the condition

(vi)′ f |(0,∞) is smooth, and lim
x→0+

f (n)(x)

x
= 0 for all n = 0, 1, 2, . . . .
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In particular, the derivatives of f of all orders at the origin are zero:

f(0) = 0, f ′(0) = 0, f ′′(0) = 0, . . . .

This property implies [1]

(1) lim
x→0

f(x)

xn
= 0 (n = 0, 1, 2, . . . ),

which says that the tax rate for persons with low income is very low as in
Fig. 1. Our T-functions are non-analytic smooth functions. If we throw away
the smoothness condition (vi), it is still desirable to keep the “infinitely-contact-
to-zero property” (1), because this is the condition “to care the poor infinitely.”

Since we assume sufficient smoothness, the properties (ii), (iv), (v) are guar-
anteed by the following conditions:

(ii)′ f ′(x) > 0 when x > 0.
(iv)′ If 0 < x < 1, then f ′′(x) > 0. If x > 1, then f ′′(x) < 0.
(v)′ For x > 0, let g(x) := x(1− f(x)). Then g′(x) > 0, i.e.,

(xf(x))′ = f(x) + xf ′(x) < 1.

Since we have conditions (ii) and (iii), it is easy to see that the condition (iv)′

is equivalent to the condition

(iv)′′ x = 1 is the unique solution of the equation f ′′(x) = 0 for x > 0.

We call this condition the inflection condition.

1.1. Assisting functions

A smooth function

h : (0,∞)→ (0,∞)

will be called the assisting function of a T-function f , if

f(x) = e−1/h(x), i.e., h(x) =
1

log(1/f(x))

for x > 0. In particular, h is an increasing function such that

lim
x→0+

h(x) = 0, lim
x→∞

h(x) =∞.

For the inflection value y1 := f(1) ∈ (0, 1), we have

h1 := h(1) =
1

log(1/y1)
.

If we use the tithing system y1 = 1/10, then h1 = 1/ log 10 ≈ 0.43.

Proposition 1.2. Suppose that a function h : (0,∞)→ (0,∞) has the Hölder-
continuity at the origin, i.e., for some α > 0,

(2) lim
x→0+

h(x)

xα
<∞.

Then the function f(x) := e−1/h(x) has the property (1).



826 H.-J. KIM

Proof. Take N ∈ R so that αN > n. Then

0 ≤ lim
x→0

f(x)

xn
= lim
x→0+

e−1/h(x)

xn
= lim
x→0+

e−1/h(x)

h(x)N
h(x)N

xn

≤ lim
t→0+

e−1/t

tN
· lim
x→0+

(
h(x)

xα

)N
xαN

xn
= 0.

Thus we have the property (1). �

Theorem 1.3. Suppose that a positive differentiable function h : (0,∞) → R
satisfies a differential equation

xh′(x) = P (x, h(x))

for some polynomial function P (x, y). Then the function f(x) := e−1/h(x) has
the property

(3) f (n)(x) =
Pn(x, h(x))

x2n−1h(x)2n
f(x) (n = 1, 2, 3, . . . )

for some polynomial Pn(x, y). Moreover, if h(x) has the Hölder continuity at
the origin, then f(x) is smooth at the origin in the sense of (vi)′.

Proof. Smoothness of h(x) and f(x) for x > 0 is trivial. Note that

f ′(x) =
h′(x)

h(x)2
f(x) =

P (x, h(x))

xh(x)2
f(x).

Thus when n = 1, the relation (3) holds with P1(x, y) = P (x, y). General case
follows from the induction. Finally, suppose h has the Hölder continuity (2).
Then given a positive integer n, take a positive integer N large enough so that

lim
x→0+

f (n)(x)

x
= lim
x→0+

Pn(x, h(x))e−1/h(x)

x2n−1+1h(x)2n

= lim
x→0+

Pn(x, h(x))

(
h(x)

xα

)N
xαN

x2n−1+1
lim
x→0+

e−1/h(x)

h(x)2n+N
= 0.

This completes the proof. �

1.1.1. Inflection condition for the assisting function. Note that

f ′′(x) =

((
h′(x)

h(x)2

)′
+

(
h′(x)

h(x)2

)2
)
f(x)

=
h′(x)2(1− 2h(x)) + h(x)2h′′(x)

h(x)4
f(x).

Thus the “inflection condition” (iv) (or (iv)′, (iv)′′) means that the equation

(4) h′(x)2(1− 2h(x)) + h(x)2h′′(x) = 0 (x > 0)

has a solution x = 1 and there are no other solutions.
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1.1.2. Net income condition for the assisting function. Since

f(x) + xf ′(x) =

(
1 +

xh′(x)

h(x)2

)
f(x).

the condition (v)′ is equivalent to the condition:

(v)′′ 1 +
xh′(x)

h(x)2
< e1/h(x) (x > 0).

Lemma 1.4. Suppose that a differentiable function h(x) satisfies the inequality

0 < xh′(x) ≤ h(x) (x > 0).

Then the inequality (v)′′ holds.

A proof of the above lemma follows from the observation

1 +
xh′(x)

h(x)2
≤ 1 +

1

h(x)
≤ e1/h(x).

2. The least upper bound of personal net income

Given a T-function f , the net income function is g(x) = x(1 − f(x)). Let
M be the limit

M := lim
x→∞

g(x).

Then using the assisting function h(x), we have

(5) M = lim
x→∞

x(1− e1/h(x)) = lim
x→∞

x

h(x)

1− e−1/h(x)

1/h(x)
= lim
x→∞

x

h(x)
.

We will consider both the unbounded model (M = ∞) and the bounded
model (M <∞).

2.1. Two unbounded models

In this case, the assisting function h(x) satisfies the condition:

lim
x→∞

g(x) = lim
x→∞

x

h(x)
= M =∞.

2.1.1. High Tax model. Here we consider a model with high tax for high in-
come persons. For real numbers k > 2 and 0 < α < 1, let

f(x) := e−k/x
α

(x > 0).

In other words h(x) := 1
kx

α. We will soon determine the values of k and α.

When x > 0, f ′(x) = αkx−1−αf(x), and hence

(6) f ′′(x) = αkx−2(αkx−2α − (1 + α)x−α)f(x).

In general, one can see easily by induction that for each nonnegative integer n,
there exists a polynomial pn(x) of degree n, such that

f (n)(x) = x−npn(x−α)f(x) (n = 0, 1, 2, . . . ).
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Thus

lim
x→0+

f (n)(x)

x
= 0 (n = 0, 1, 2, . . . ).

This implies that f(x) is smooth at x = 0. In fact, we may use Theorem 1.3
directly to see the smoothness of f at the origin.

Moreover, from (6), x = 1 is the unique inflection point of f(x) if

α =
1

k − 1
∈ (0, 1).

On the other hand

xh′(x) < h(x)

and hence Lemma 1.4 implies that the net income function g(x) is increasing.
Now with y1 := f(1) = 1

10 ,

k = − log y1 = log 10 ≈ 2.3, α =
1

log 10− 1
≈ 0.8.

In this case, the graph of f(x) looks like Figure 3.
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Fig. 3: An unbounded model f(x) = e−k/x
α

2.1.2. Low tax model. We discuss another model which pays less tax than the
previous model for high income persons.

For positive real numbers k and a, let

h(x) = k log(1 + ax)

be the assisting function. This is clearly an unbounded model. The values of
k and a will be soon determined. Then for x > 0,

f (n)(x) =
p2n(1/ log(1 + ax))

(1 + ax)n
f(x) (n = 0, 1, 2, . . . )

for some polynomial p2n(x) of degree 2n. Thus f(x) is smooth everywhere.
Now

(7) h1 = k log(1 + a).

We follow tithing condition: h1 = 1/ log 10 ' 0.43. On the other hand

h′(x) =
ka

1 + ax
, h′′(x) = − ka2

(1 + ax)2
.
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Since xh′(x) < h(x), Lemma 1.4 implies that the net income function g(x) is
increasing. The inflection condition (i.e., the condition that x = 1 is the unique
solution of the equation (4)) means now that the equation

k(log(1 + ax))2 + 2k log(1 + ax)− 1 = 0

has a unique solution x = 1. Then

k(log(1 + a))2 + 2k log(1 + a)− 1 = 0

and from the condition (7), we have

log(1 + a) = (1− 2h1)/h1 (i.e., a ≈ 0.35), k =
h21

1− 2h1
≈ 1.44.

In this model the graph of f(x) is in Fig. 4.
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Fig. 4: f(x) = e−/k log(1+ax) (Dotted curve is from Fig. 3.)

2.2. A bounded model

If the least upper bound M of personal net income is finite, then from (5),
we have the asymptotic relation

h(x) ∼ x

M
(x→∞).

This M is meaningful only when it is sufficiently large. In particular M is
larger than the inflection point x = 1: M � 1.

We will find an assisting function h(x) for large M , which obeys the tithing
rule: y1 = 1

10 , i.e., h1 = 1
log 10 ≈ 0.43.

For positive real numbers k and α ∈ ( 2
3 , 1), we consider the assisting function

h(x) :=
x

M
+ kxα.

We now explain how to determine the values of k and α, when given M is large.
Note that it is easy to check that the T-function f(x) is smooth everywhere.
In fact, smoothness follows from Theorem 1.3. Moreover, we have the equality
h1 = 1

M + k, i.e.,

(8) k = h1 − 1/M.

Thus if M is very large, then k is very close to h1. The value of α will be soon
determined in the interval ( 2

3 , 1). On the other hand

h′(x) =
1

M
+ kαxα−1.
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Fig. 5: Two parabolas

Thus, for x > 0,

xh′(x) =
x

M
+ kαxα <

x

M
+ kxα = h(x).

Now from Lemma 1.4 again, the condition (v)′′, or the condition (v) holds.
Moreover

h′′(x) = kα(α− 1)xα−2.

Now from (4), the “inflection condition” is that the equation(
1

M
+ kαxα−1

)2 (
1− 2

( x
M

+ kxα
))

+
( x
M

+ kxα
)2
kα(α− 1)xα−2 = 0

has a unique solution x = 1. The left hand side of the above equation is

(9)
1

M2
+ c1x

α−1 + c2x
2(α−1) − c3x− c4xα − c5x2α−1 − c6x3α−2

for some positive numbers c1, . . . , c6. Therefore if 2
3 < α < 1, then (9) is a

(strictly) decreasing function and hence has a unique, if exists, zero. Now if
x = 1 is a solution, then(

1

M
+ kα

)2

(1− 2h1) + h21kα(α− 1) = 0.

In other words

k(1− 2h1)

h21

(
α+

1

kM

)2

= α(1− α),

where k is given by (8). From Fig. 5, we see immediately that there are two
α’s between 0 and 1 satisfying the above equation, when M is sufficiently large.
We take the larger solution as the value of α:

α :=
2−4h1+h

3
1M

2+h1M
(
3h1−2+

√
4h1−7h2

1+2h2
1(3h1−2)M+h4

1M
2
)

2(1−2h1+h1(3h1−2)M+h2
1(1−h1)M2)

.

From this when M approaches infinity, the limit of α is h1/(1 − h1) ' 0.77.
Thus 2

3 < α < 1 for large M . This gives a bounded model.
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3. Conclusion

Various smooth models for progressive tax rate functions are discussed. The
key requirement of the progressive tax rate functions is that they should have
infinite contact with the zero function at the origin. We regard these models
better than any discontinuous or piecewise-linear continuous models, since they
care the poor more.
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