• 제목/요약/키워드: Mathematic

검색결과 295건 처리시간 0.023초

고려.조선시대의 수학과 사회 (MATHEMATICS AND SOCIETY IN KORYO AND CHOSUN)

  • 정지호
    • 한국수학사학회지
    • /
    • 제2권1호
    • /
    • pp.91-105
    • /
    • 1985
  • Though the tradition of Korean mathematics since the ancient time up to the "Enlightenment Period" in the late 19th century had been under the influence of the Chinese mathematics, it strove to develop its own independent of Chinese. However, the fact that it couldn't succeed to form the independent Korean mathematics in spite of many chances under the reign of Kings Sejong, Youngjo, and Joungjo was mainly due to the use of Chinese characters by Koreans. Han-gul (Korean characters) invented by King Sejong had not been used widely as it was called and despised Un-mun and Koreans still used Chinese characters as the only "true letters" (Jin-suh). The correlation between characters and culture was such that , if Koreans used Han-gul as their official letters, we may have different picture of Korean mathematics. It is quite interesting to note that the mathematics in the "Enlightenment Period" changed rather smoothly into the Western mathematics at the time when Han-gul was used officially with Chinese characters. In Koryo, the mathematics existed only as a part of the Confucian refinement, not as the object of sincere study. The mathematics in Koryo inherited that of the Unified Shilla without any remarkable development of its own, and the mathematicians were the Inner Officials isolated from the outside world who maintained their positions as specialists amid the turbulence of political changes. They formed a kind of Guild, their posts becoming patrimony. The mathematics in Koryo is significant in that they paved the way for that of Chosun through a few books of mathematics such as "Sanhak-Kyemong, "Yanghwi - Sanpup" and "Sangmyung-Sanpup." King Sejong was quite phenomenal in his policy of promotion of mathematics. King himself was deeply interested in the study, createing an atmosphere in which all the high ranking officials and scholars highly valued mathematics. The sudden development of mathematic culture was mainly due to the personality and capacity of King who took any one with the mathematic talent onto government service regardless of his birth and against the strong opposition of the conservative officials. However, King's view of mathematics never resulted in the true development of mathematics per se and he used it only as an official technique in the tradition way. Korean mathematics in King Sejong's reign was based upon both the natural philosophy in China and the unique geo-political reality of Korean peninsula. The reason why the mathematic culture failed to develop continually against those social background was that the mathematicians were not allowed to play the vital role in that culture, they being only the instrument for the personality or politics of the King. While the learned scholar class sometimes played the important role for the development of the mathematic culture, they often as not became an adamant barrier to it. As the society in Chosun needed the function of mathematics acutely, the mathematicians formed the settled class called Jung-in (Middle-Man). Jung-in was a unique class in Chosun and we can't find its equivalent in China of Japan. These Jung-in mathematician officials lacked tendency to publish their study, since their society was strictly exclusive and their knowledge was very limited. Though they were relatively low class, these mathematicians played very important role in Chosun society. In "Sil-Hak (the Practical Learning) period" which began in the late 16th century, especially in the reigns of King Youngjo and Jungjo, which was called the Renaissance of Chosun, the ambitious policy for the development of science and technology called for the rapid increase of the number of such technocrats as mathematicians inevitably became quite ambitious and proud. They tried to explore deeply into mathematics per se beyond the narrow limit of knowledge required for their office. Thus, in this period the mathematics developed rapidly, undergoing very important changes. The characteristic features of the mathematics in this period were: Jung-in mathematicians' active study an publication, the mathematic studies by the renowned scholars of Sil-Hak, joint works by these two classes, their approach to the Western mathematics and their effort to develop Korean mathematics. Toward the "Enlightenment Period" in the late 19th century, the Western mathematics experienced great difficulty to take its roots in the Peninsula which had been under the strong influence of Confucian ideology and traditional Korean mathematic system. However, with King Kojong's ordinance in 1895, the traditonal Korean mathematics influenced by Chinese disappeared from the history of Korean mathematics, as the school system was changed into the Western style and the Western matehmatics was adopted as the only mathematics to be taught at the schools of various levels. Thus the "Enlightenment Period" is the period in which Korean mathematics sifted from Chinese into European.od" is the period in which Korean mathematics sifted from Chinese into European.pean.

  • PDF

수학의 1차적 개념이 초등학교 3학년 영재아의 수학적 개념구성과정에 미치는 영향에 대한 사례연구 - 분수의 덧셈과 곱셈을 중심으로 - (A Case Study about Influence of Primary Mathematic Concepts on the Composition of Mathematic Concepts in 3rd grade Prodigies of Elementary Schools - Focusing on Addition and Multiplication of Fractions -)

  • 김화수
    • 영재교육연구
    • /
    • 제24권1호
    • /
    • pp.17-43
    • /
    • 2014
  • 본 연구에서는 사칙연산과 분수의 1차적 개념을 학습한 초등학교 3학년 영재아 3명을 대상으로 분수의 덧셈과 곱셈을 내용으로 하였을 때, 정확한 개념의 인지와 개념의 연결로 분수의 덧셈과 곱셈에 대한 스키마와 변형된 스키마1)를 어떻게 구성을 하는지에 대해 질적 사례연구를 통하여 알아보았다. 즉 수학의 1차적 개념의 구성으로 어떠한 스키마와 변형된 스키마를 형성하여 분수의 덧셈과 곱셈에 대한 관계적 이해를 하는지, 그리고 영재아들이 스스로 형성한 스키마와 변형된 스키마를 어떻게 이용하여 분수의 덧셈과 곱셈의 문제 해결에 접근을 하는지, 또한 연구대상자들의 개념구성과 문제해결력에서의 스키마는 어떻게 변형을 이루어 나가는지를 심도 있게 조사하였다. 그 결과 분수의 덧셈에서 분수의 곱셈으로 연결될 때, 정확한 1차적 개념에 대한 인지와 스키마 그리고 변형된 스키마가 중요한 요인으로 작용한다는 것을 알 수 있었고, 이때 수학의 1차적 개념끼리의 연결과 정확한 1차적 개념에 대한 인지로 인해서 만들어지는 스키마와 변형된 스키마의 형성이 분수의 덧셈과 곱셈의 창의적 문제 해결에 무엇보다도 중요한 역할을 한다는 것을 알 수 있었다.

교사의 수업 계획 및 실제 수업에서의 수학 교과서와 교사용지도서 활용 연구 (How Teachers Use Mathematics Curriculum Materials in Planning and Implementing Mathematics Lessons)

  • 김구연
    • 대한수학교육학회지:학교수학
    • /
    • 제13권3호
    • /
    • pp.485-500
    • /
    • 2011
  • 수학 교사가 수업을 계획하고 계획한 수업을 실행할 때 교육과정 도서(교과서, 교사용지도서 등)를 어떻게 활용하는지에 대하여 시행된 연구가 많지 않은 실정이다. 이 논문은 미국의 초등 교사들이 초등 수학 교육과정의 프로그램 중의 하나인 Everyday Mathematics의 교육과정 도서를 어떻게 활용하는지, 또한 Everyday Mathematics가 가지는 교육과정 도서로써의 특징 요소들이 무엇인지 분석한다. 나아가 Stein & Kim(2009)의 연구에서 제안한 교육과정 도서를 규명하는 특징 요소들과 교사들의 교육과정 도서의 활용 간의 연관성을 추정한다. 수집된 자료는 미국 초등 교사의 수학수업 관찰노트와 관찰 전후에 실시한 인터뷰, 수업 시간에 사용한 모든 문서와 자료, 그리고 Everyday Mathematics의 교사용 지도서 등이다. 분석 결과, Everyday Mathematics는 높은 수준의 인지적 노력(cognitive demand)을 필요로 하는 수학과제들로 구성되어 있으며 (80 퍼센트), 교육과정 개발자들의 의도와 이유가 분명하게 드러나지는 않는 것으로 나타났다. 대부분의 교사들은 교사용 지도서를 참조하여 수업을 계획하고 실행하는데 있어서 지도서에서 제시한 문제나 활동을 변형하거나 부분적으로 선택하여 가르치는 것으로 나타났다. 이 과정에서 Everyday Mathematics 교육과정에서 제시한 인지적 노력 수준이 높은 수학 과제들의 27퍼센트만이 같은 수준에서 실행되는 것으로 나타났다. 교과서에서 실행 단계로 이동할 때 수학과제의 인지적 노력 수준이 감소하는 것은 교사용 지도서가 높은 인지적 노력수준의 수학 과제를 교사가 같은 수준에서 실행할 수 있도록 제대로 지원해 주지못하는 것에 기인하는 것으로 볼 수 있다.

  • PDF

MAPPINGS ON FUZZY PROXIMITY AND FUZZY UNIFORM SPACES

  • Kim, Yong Chan
    • Korean Journal of Mathematics
    • /
    • 제4권2호
    • /
    • pp.149-161
    • /
    • 1996
  • We define the fuzzy uniformly continuous map and investigate some properties of fuzzy uniformly continuous maps. We will prove the existences of initial fuzzy uniform structures induced by some functions. From this fact, we construct the product of two fuzzy uniform spaces.

  • PDF

SOME HILBERT FUNCTIONS FROM k-CONFIGURATIONS ONLY

  • SHIN DONG-SOO
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.685-689
    • /
    • 2005
  • We find some Hilbert functions of codimension 4, which are obtained from only k-configurations in $\mathbb{P}^{3}$ and support the $3^{rd}$ linear syzygy.

STUDY ON THE TENSOR PRODUCT SPECTRUM

  • Lee, Dong Hark
    • Korean Journal of Mathematics
    • /
    • 제14권1호
    • /
    • pp.1-5
    • /
    • 2006
  • We will introduce tensor product spectrums on the tensor product spaces. And we will show that ${\sigma}[P(T_1,T_2,{\ldots},T_n)]=P[({\sigma}(T_1),{\sigma}(T_2){\ldots},{\sigma}(T_n)]={\sigma}(T_1,T_2{\ldots},T_n)$.

  • PDF