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ON REFINEMENTS OF HÖLDER’S INEQUALITY II

Ern G. Kwon and Jung E. Bae

Abstract. Generalized Hölder inequality developed by H. Qiang and Z.
Hu is further refined. Also, generalized Hölder inequality developed by X.

Yang is further refined.

1. Introduction

There have been lots of generalizations, extensions and refinements of the
classical Hölder inequality. See, [1] and [2] for classical results, and see for
example [3-13] and [14] for recent developments on this topic. Among them is
the following theorem of H. Qiang and Z. Hu established in 2011.

Theorem A ([10] Theorem 2.1). Let aij > 0, pk > 0, αkj ∈ R (i = 1, 2, · · · , n;
j = 1, 2, · · · ,m; k = 1, 2, · · · , s),

∑s
k=1

1
pk

= 1 and
∑s
k=1 αkj = 0. Then

n∑
i=1

m∏
j=1

aij ≤
s∏

k=1


n∑
i=1

 m∏
j=1

a
1+pkαkj

ij


1/pk

. (1.1)

Moreover, for the integral form of the above inequality, if fj (x) > 0 (j = 1, 2,
· · · ,m), x ∈ [a, b], −∞ < a < b < +∞ and fj ∈ C([a, b]), then

∫ b

a

 m∏
j=1

fj (x)

 dx ≤
s∏

k=1

∫ b

a

m∏
j=1

f
1+pkαkj

j (x) dx

1/pk

. (1.2)

Remark 1. If we set s = m and αkj =

{
−1/pk (j 6= k)

1− (1/pk) (j=k)
for j = 1, 2, · · · ,m,

k = 1, 2, · · · , s, then (1.1) and (1.2) reduce to classical Hölder’s inequality of
discrete form and integral form respectively. Theorem A extends Hölder’s in-
equality in this sense.
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The objective of this paper is to generalize Theorem A to the case of
∑s
k=1

1
pk

≥ 1 and to improve Theorem A by inserting a quantity Q (≤ 1) in the right side
of (1.1) or (1.2). See Theorem 2.1 and Theorem 2.2.

As an application, we can insert a new continuum between two sides of
classical Hölder inequality. See Theorem 4.1 and Remark 4.3.

2. Refinments

The following theorems are our first results of this paper which refine (1.1)
and (1.2) respectively.

Theorem 2.1. Let aij > 0, pk > 0, αkj ∈ R (i = 1, 2, · · · , n; j = 1, 2, · · · ,m;
k = 1, 2, · · · , s),

∑s
k=1

1
pk

= r ≥ 1 and
∑s
k=1 αkj = 0. If ei ∈ R satisfy

1 − ei + el ≥ 0 (i = 1, 2, · · · , n; l = 1, 2, · · · , n), then for any pair {k1, k2} ⊂
{1, 2, · · · , s} we have

n∑
i=1

m∏
j=1

aij ≤ n1−1/rQ1/r
1

s∏
k=1


n∑
i=1

 m∏
j=1

a
1+pkαkj

ij


1

rpk

, (2.1)

where Q1 = Q1 (k1, k2, {aij}) =

1−

{∑n
i=1 ei

∏m
j=1 a

1+pk1
αk1j

ij∑n
i=1

∏m
j=1 a

1+pk1
αk1j

ij

−
∑n
i=1 ei

∏m
j=1 a

1+pk2
αk2j

ij∑n
i=1

∏m
j=1 a

1+pk2
αk2j

ij

}2


1

2max(pk1
,pk2)

.

Theorem 2.2. Let fj ∈ C([a, b]), fj(x) > 0, pk > 0, αkj ∈ R (x ∈ [a, b];
j = 1, 2, · · · ,m; k = 1, 2, · · · , s),

∑s
k=1

1
pk

= r ≥ 1 and
∑s
k=1 αkj = 0. If

e ∈ C([a, b]) satisfy 1−e(x)+e(y) ≥ 0 (x, y ∈ [a, b]), then for any pair {k1, k2} ⊂
{1, 2, · · · , s} we have

∫ b

a

m∏
j=1

fj (x) dx ≤ (b− a)1−1/rQ
1/r
2

s∏
k=1

∫ b

a

m∏
j=1

f
1+pkαkj

j (x) dx

 1
rpk

,(2.2)

where Q2 = Q2

(
k1, k2, {fj}mj=1

)

=

1−

{∫ b
a
e(x)

∏m
j=1 f

qk1,j

j (x)dx∫ b
a

∏m
j=1 f

qk1,j

j (x)dx
−
∫ b
a
e(x)

∏m
j=1 f

qk2,j

j (x)dx∫ b
a

∏m
j=1 f

qk2,j

j (x)dx

}2


1

2max(pk1
,pk2)

with qk1,j = 1 + pk1αk1j and qk2,j = 1 + pk2αk2j.

Remark 2. The case r = 1 with ej = constant for all j (resp. e(x) = constant
and all x) of (2.1) (resp. (2.2)) reduces to (1.1) (resp. (1.2)).
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3. Proofs

We now are going to prove Theorem 2.1 and Theorem 2.2. Since our process
of two proofs are same, we give a proof of Theorem 2.2 left that of Theorem
2.1. We make use of the following lemma whose proof we omit is, by replacing
summations over {1, 2, · · · , n} with integrations over [a, b], exactly similar to
that of Theorem 1.1 in [7].

Lemma 3.1. Let fj ∈ C([a, b]), fj(x) > 0, pj > 0 (x ∈ [a, b]; j = 1, 2, · · · ,m),
and

∑m
j=1

1
pj

= r ≥ 1. If e ∈ C([a, b]) satisfy 1− e(x) + e(y) ≥ 0 (x, y ∈ [a, b]),

then for any pair {j1, j2} ⊂ {1, 2, · · · ,m} we have

∫ b

a

m∏
j=1

fj(x)dx ≤ (b− a)1−min{r,1}M ·
m∏
j=1

(∫ b

a

f
pj
j (x)dx

)1/pj

, (3.1)

where M = M(j1, j2 : {fj}mj=1)

=

1−

{∫ b
a
e(x)f

pj1
j1

(x)dx∫ b
a
f
pj1
j1

(x)dx
−
∫ b
a
e(x)f

pj2
j2

(x)dx∫ b
a
f
pj2
j2

(x)dx

}2
 1

2max(pj1
,pj2)

.

Proof of Theorem 2.2. Let gk(x) =
{∏m

j=1 f
1+pkαkj

j (x)
}1/pk

(k = 1, 2, · · · , s),

then it is simple to see
∏s
k=1 gk(x) =

{∏m
j=1 fj(x)

}r
.

First, assume r = 1. Then by (3.1),

∫ b

a

m∏
i=1

fi(x)dx =

∫ b

a

s∏
k=1

gk(x)dx ≤M ·
s∏

k=1

{∫ b

a

gpkk (x)dx

}1/pk

where M = M(k1, k2 : {gk}sk=1)

=

1−

{∫ b
a
e(x)g

pk1

k1
(x)dx∫ b

a
g
pk1

k1
(x)dx

−
∫ b
a
e(x)g

pk2

k2
(x)dx∫ b

a
g
pk2

k2
(x)dx

}2
 1

2max(pj1
,pj2)

.

With qk1,j = 1 + pk1αk1j and qk2,j = 1 + pk2αk2j , this M equals1−

{∫ b
a
e(x)

∏m
j=1 f

qk1,j

j (x)dx∫ b
a

∏m
j=1 f

qk1,j

j (x)dx
−
∫ b
a
e(x)

∏m
j=1 f

qk2,j

j (x)dx∫ b
a

∏m
j=1 f

qk2,j

j (x)dx

}2


1

2max(pk1
,pk2)

= Q2 = Q2(k1, k2, {fj}mj=1).
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Next, assume r > 1. Then by Jensen’s inequality and (3.1),∫ b

a

m∏
i=1

fi(x)dx ≤ (b− a)1−1/r

[∫ b

a

{
m∏
i=1

fi(x)

}r
dx

]1/r

=(b− a)1−1/r

{∫ b

a

s∏
k=1

gk(x)dx

}1/r

≤(b− a)1−1/r

M (k1, k2 : {gk}sk=1) ·
s∏

k=1

{∫ b

a

gpkk (x)dx

}1/pk
1/r

=(b− a)1−1/rQ
1/r
2 (k1, k2 : {fj}mj=1) ·

s∏
k=1


∫ b

a

m∏
j=1

f
1+pkαkj

j (x) dx


1

rpk

.

The proof is complete. �

4. Another Refinments

We can improve another refinements of Hölder’s inequality as consequences
of Theorem 2.1 and Theorem 2.2.

Recall the case r = 1 and s = m of (2.2) :

∫ b

a

m∏
j=1

fj(x)dx ≤ Q2 ·
m∏
k=1


∫ b

a

m∏
j=1

f
1+pkαkj

j (x)dx


1/pk

. (4.1)

For a fixed t ∈ R, if we set αkj =

{
−t/pk (j 6= k)

t(1− 1/pk) (j = k)
, then we have

m∏
j=1

f
1+pkαkj

j (x) = f
1+pk(1−1/pk)t
k (x)

m∏
j 6=k

f1−tj (x) = {fk(x)}pkt


m∏
j=1

fj(x)


1−t

,

so that (4.1) becomes

∫ b

a

m∏
j=1

fj(x)dx ≤ Q2 ·
m∏
k=1

∫ b

a

{fk(x)}pkt


m∏
j=1

fj(x)


1−t

dx


1/pk

. (4.2)

According to [6], the function H : R −→ R+ defined by

H(t) =

m∏
k=1

∫ b

a

{fk(x)}pkt


m∏
j=1

fj(x)


1−t

dx


1/pk

(4.3)
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satisfied tH ′(t) ≥ 0, so that in particular

H(0) ≤ H(t) ≤ H(u), 0 ≤ t ≤ u <∞. (4.4)

Inequality (4.4) with u = 1 refines Hölder’s inequality because

H(0) =

m∏
k=1


∫ b

a

m∏
j=1

fj(x)dx


1/pk

=

∫ b

a

m∏
j=1

fj(x)dx,

and

H(1) =

m∏
k=1

{∫ b

a

fk(x)pkdx

}1/pk

.

By (4.2), we obtain a further refinement of (4.4). We state it as the following.

Theorem 4.1. Let fj ∈ C([a, b]), fj(x) > 0, pk > 0, (x ∈ [a, b]; j, k =
1, 2, · · · ,m), and

∑m
k=1

1
pk

= 1. Let N = {1, 2, · · · ,m} and e ∈ C([a, b]) satisfy

1− e(x) + e(y) ≥ 0 (x, y ∈ [a, b]). Define a function H : R −→ R+ by

H(t) =

m∏
k=1

∫ b

a

{fk(x)}pkt


m∏
j=1

fj(x)


1−t

dx


1/pk

,

and define another function Q2 : N2 × R −→ [0, 1] by

Q2 (k1, k2; t)

=

1−

{∫ b
a
e(x)F (k1, t;x)dx∫ b
a
F (k1, t;x)dx

−
∫ b
a
e(x)F (k2, t;x)dx∫ b
a
F (k2, t;x)dx

}2
 1

2max(pk1
,pk2)

with

F (k, t;x) = {fk(x)}pkt


m∏
j=1

fj(x)


1−t

.

Then

H(0) ≤ Q2 (k1, k2; t) ·H(t) ≤ H(t) ≤ H(u), 0 ≤ t ≤ u <∞. (4.5)

Remark 3. Notinging that 0 ≤ Q2 ≤ 1, the case u = 1 of (4.5) inserted two
continuums between two sides of classical Hölder inequality.

Remark 4. Of course Theorem 4.1 has its discrete form by replacing integrations
with summations, which can be verified by an exactly same manner. Histori-
cally, X. Yang in [14] observed a function h : R −→ R+ by

h(t) =

n∏
k=1

 m∑
i=1

{apkik }
t


n∏
j=1

aij


1−t

1/pk

(4.6)
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for a positive sequence {aij} and another positive sequence {pk} satisfying∑n
k=1

1
pk

= 1. He verified that

h(0) ≤ h(t) ≤ h(u), 0 ≤ t ≤ u <∞, (4.7)

the case u = 1 of which connects both sides of (discrete) Hölder’s inequality by
a continuum. We can refine (4.7) as

h(0) ≤ Q1(t) · h(t) ≤ h(t) ≤ h(u), 0 ≤ t ≤ u <∞, (4.8)

where Q1(t) = Q1 (k1, k2; t) is defined by

N1(t) =

[
1−

{∑n
i=1 eib(k1, t; i)∑n
i=1 b(k1, t; i)

−
∑n
i=1 eib(k2, t; i)∑n
i=1 b(k2, t; i)

}2
] 1

2max(pk1
,pk2)

.

with {k1, k2} ⊂ {1, 2, · · · , n} and

b(k, t; i) = {aik}pkt


m∏
j=1

aij


1−t

.

Remark 5. As in [KBe], we can extensively define H(t) unifying (4.3) and (4.6)
on a general measure space. By improving Lemma 3.1 to the case of a general
measure space, we can obtain an extended result which can be reduced both
to (4.5) and (4.8) as special cases. This topic will be considered with various
applications in a coming paper of the first author.
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[9] J. Pecaric, V. Simic, A note on the Hölder inequality, Journal of Inequalities in Pure and

Applied Mathematics, 7, Article 176 (2006), 1-3.
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