• Title/Summary/Keyword: Material separation

Search Result 833, Processing Time 0.036 seconds

Covalent organic polymer grafted on granular activated carbon surface to immobilize Prussian blue for Cs+ removal (유기고분자로 표면 개질 된 입상활성탄을 이용한 프러시안 블루 고정화 및 Cs+ 제거)

  • Seo, Younggyo;Oh, Daemin;Hwang, Yuhoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.

Separation of Non-covalently Functionalized Graphene Nanoplatelets via Salting-out Process (염석법을 이용한 비공유 기능기화된 그래핀 나노플레이트렛의 분리 공정 연구)

  • Kim, Joonhui;Yoo, Sung Chan;Cha, Jaemin;Ryu, Hojin;Hong, Soon Hyung
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.134-140
    • /
    • 2019
  • Graphene nanoplatelets (GNP), one of the graphene derivatives is famous as the most proper candidate for industrial applications. However, current performance of GNPs as reinforcing filler in composites is limited by their agglomeration and physicochemical heterogeneity. Herein, an approach to produce non-covalently functionalized GNPs (F-GNPs) is reported which possesses potential to be extended as the industrial level of mass production. The one-step functionalization process uses melamine, a low-cost chemical, to prevent agglomeration and dispersion in polar solvents. Furthermore, a purification strategy called salting-out process based on differences in the dispersibility of the individual F-GNP flakes is reported to separate F-GNPs. The functionalization and separation process developed in this paper provides a strategy to use GNPs at the industrial level in composite applications.

(PIM-co-Ellagic Acid)-based Copolymer Membranes for High Performance CO2 Separation ((PIM-co-Ellagic Acid)-기반의 이산화탄소 분리막의 개발)

  • Hossain, Iqubal;Husna, Asmaul;Kim, Dongyoung;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.420-432
    • /
    • 2020
  • Random copolymers made of both 'polymer of intrinsic microporosity (PIM-1)' and Ellagic acid were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and flat-type hydrophilic ellagic acid, the membranes obtained from these random copolymers [(PIM-co-EA)-x] showed high CO2 permeability (> 4516 Barrer) with high CO2/N2 (> 23~26) and CO2/CH4 (> 18~19) selectivity, that surpassed the Robeson upper bound (2008) for both pairs of the gas mixture. Incorporation of flat-type ellagic acid into the PIM-1 not only enhances the gas permeability by disturbing the kinked structure of PIM-1 but also increases the selectivity of CO2 over N2 and CH4, due to an increase of rigidity and polarity in the resultant copolymer membranes.

DESIGN AND PERFORMANCE PARAMETERS OF VIBRATING POTATO DIGGERS

  • Kang, Whoa-S.;Kim, Sang-H.;Lee, Gwi-H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.734-743
    • /
    • 1993
  • The performances of three same type of vibrating potato diggers were estimated by observing the potato separation and material flow on the bottom plate. Four-bar mechanism were adopted for three diggers and pairs of eccentric cams on both sides of driving shaft were used as driving link of the diggers. Each machine was tested with different amplitudes , frequencies, and travels speeds. Blade performance were observed in three categories : Impossible forward travel , acceptable operation, and unsatisfactory potato digging , but good material flow. Three parameters were used to set marginal values that enable the machines operate for potato digging, and the parameters were compared to select best one. Three parameters are λ, $\rho$, and K.λ is the ratio of vibrating speed to travel speed, $\rho$ is the ratio of blade acceleration to travel speed, and K is the ratio of blade acceleration to gravitational acceleration. K value of 2 or more is suggested to be used as design and evalu tion criterion of the vibrating digger.

  • PDF

Superconducting Magnetic Separator for Purification of Industrial Wastewater (산업폐수의 수처리를 위한 초전도 자기분리 장치 제작)

  • Ha, Dong-Woo;Kwon, Jun-Mo;Ko, Rock-Kil;Baik, Seung-Kyu;Sohn, Myung-Hwan;Lee, Yu-Jin;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.44-44
    • /
    • 2010
  • Conventional water treatment facilities like precipitation process need large-scale equipment and wide space to purify the wastewater of paper factory. In case of massive waste water, high gradient magnetic separation (HGMS) parts are more effective to purify it rapidly and to occupy relatively small space, since large voids at filter with HGMS are adopted. Cryo-cooled Nb-Ti superconducting magnet with room temperature bore in diameter of 100 mm and 600 mm in height was used for magnetic separator. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets.

  • PDF

Recover of gypsum from waste plaster board and the refining process

  • Song, Young-Jun;Hiroki Yotsumoto
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.342-348
    • /
    • 2001
  • This study was conducted to obtain granular crystalline gypsum that can be used as raw material for plaster boards or cements from waste Plaster board. We could disintegrate preferentially gypsum to gypsum needle in 10${\mu}{\textrm}{m}$ or less size among the contents of waste plaster board (gypsum, paper, fiber, and inorganic material .etc.) by hydration afterwards the dehydration of crushed waste plaster board. In this case, the optimum conditions for minimizing the size of gypsum were dehydration rate of 75%~ 85%, hydration concentration of 10~20%, agitation speed of 250~400rpm, crushing size of 2cm or less. Gypsum of 98.21% grade was recovered with 99.0% yield from under screenings of 325mesh wet screening which followed by the dehydration-hydration process performed in the conditions of dehydration rate of 80%, hydration concentration of 15%, agitation speed of 300rpm, crushing size of 2cm or less. Subsequently, Plate-like Crystalline gypsum of is 151${\mu}{\textrm}{m}$ size and the grade of 99.49% with the Yield of 98.0% from the upper screenings of 270mesh wet screening carried out after the re-crystallization of the recovered gypsum needle slurry.

  • PDF

Recycling of Sound Insulation Headliner Waste Material (흡음재 폐기물의 재활용 방안)

  • Hong, Young-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3089-3095
    • /
    • 2013
  • The headliner was made of polyurethane(PU) and glass fiber(GF) composite materials are widely used as a sound insulation material. A large amount of waste materials occurs as a by-product in the headliner manufacturing process. In order to efficiently reuse the headliner waste materials, separation process of the components are very necessary. According to the results of thermal analysis, weight loss showed increase in the order polyurethane foam> non-foaming polyurethane> non-woven fabric> 1st layer> glass fiber in the range of up to $400^{\circ}C$. Analysis of the DSC characteristics, HDPE, LLDPE, PP, and Master Batch by adding additives the wasted scrap. As a result, except for the PP, there was no exothermic transition due to the crystallization.