DOI QR코드

DOI QR Code

Biocomposite membranes based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and multiwall carbon nanotubes for gas separation

  • Huh, Mongyoung (Korea Institute of Carbon Convergence Technology) ;
  • Lee, Hye Min (Department of Chemistry, Sangmyung University) ;
  • Park, Young Soo (Korea Institute of Carbon Convergence Technology) ;
  • Yun, Seok Il (Department of Chemical Engineering and Material Science, Sangmyung University)
  • Received : 2016.11.14
  • Accepted : 2016.12.07
  • Published : 2017.01.31

Abstract

Keywords

References

  1. Baker RW. Future directions of membrane gas separation technology. Ind Eng Chem Res, 41, 1393 (2002). https://doi.org/10.1021/ie0108088.
  2. Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art. Ind Eng Chem Res, 48, 4638 (2009). https://doi.org/10.1021/ie8019032.
  3. Shao L, Low BT, Chung TS, Greenberg AR. Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci, 327, 18 (2009). https://doi.org/10.1016/j.memsci.2008.11.019.
  4. Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR. The strategies of molecular architecture and modification of polyimide-based membranes for $CO_2$ removal from natural gas: a review. Prog Polym Sci, 34, 561 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.004.
  5. Yampolskii Y. Polymeric gas separation membranes. Macromolecules, 45, 3298 (2012). https://doi.org/10.1021/ma300213b.
  6. Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM. Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol, 75, 229 (2010). https://doi.org/10.1016/j.seppur.2010.08.023.
  7. Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol, 81, 243 (2011). https://doi.org/10.1016/j.seppur.2011.07.042.
  8. Nasir R, Mukhtar H, Man Z, Mohshim DF. Material advancements in fabrication of mixed-matrix membranes. Chem Eng Technol, 36, 717 (2013). https://doi.org/10.1002/ceat.201200734.
  9. Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS. Rapid transport of gases in carbon nanotubes. Phys Rev Lett, 89, 185901 (2002). https://doi.org/10.1103/PhysRevLett.89.185901.
  10. Ismail AF, Goh PS, Sanip SM, Aziz M. Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep Purif Technol, 70, 12 (2009). https://doi.org/10.1016/j.seppur.2009.09.002.
  11. Fonseca A, Reijerkerk S, Potreck J, Nijmeijer K, Mekhalif Z, Delhalle J. Very short functionalized carbon nanotubes for membrane applications. Desalination, 250, 1150 (2010). https://doi.org/10.1016/j.desal.2009.09.130.
  12. Aroon MA, Ismail AF, Montazer-Rahmati MM, Matsuura T. Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes. J Membr Sci, 364, 309 (2010). https://doi.org/10.1016/j.memsci.2010.08.023.
  13. Kim S, Chen L, Johnson JK, Marand E. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci, 294, 147 (2007). https://doi.org/10.1016/j.memsci.2007.02.028.
  14. Surapathi A, Herrera-Alonso J, Rabie F, Martin S, Marand E. Fabrication and gas transport properties of SWNT/polyacrylic nanocomposite membranes. J Membr Sci, 375, 150 (2011). https://doi.org/10.1016/j.memsci.2011.03.034.
  15. Sharma RB, Late DJ, Joag DS, Govindaraj A, Rao CNR. Field emission properties of boron and nitrogen doped carbon nanotubes. Chem Phys Lett, 428, 102 (2006). https://doi.org/10.1016/j.cplett.2006.06.089.
  16. Zhao A, Masa J, Schuhmann W, Xia W. Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions. J Phys Chem C, 117, 24283 (2013). https://doi.org/10.1021/jp4059438.
  17. Jang JW, Lee CE, Lyu SC, Lee TJ, Lee CJ. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl Phys Lett, 84, 2877 (2004). https://doi.org/10.1063/1.1697624.
  18. Liang EJ, Ding P, Zhang HR, Guo XY, Du ZL. Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine. Diamond Relat Mater, 13, 69 (2004). https://doi.org/10.1016/j.diamond.2003.08.025.
  19. Yadav RM, Dobal PS, Shripathi T, Katiyar RS, Srivastava ON. Effect of growth temperature on bamboo-shaped carbon-nitrogen (CN) nanotubes synthesized using ferrocene acetonitrile precursor. Nanoscale Res Lett, 4, 197 (2009). https://doi.org/10.1007/s11671-008-9225-2.
  20. Nxumalo EN, Coville NJ. Nitrogen doped carbon nanotubes from organometallic compounds: a review. Materials, 3, 2141 (2010). https://doi.org/10.3390/ma3032141.
  21. Verhoogt H, Ramsay BA, Favis BD. Polymer blends containing poly(3-hydroxyalkanoate)s. Polymer, 35, 5155 (1994). https://doi.org/10.1016/0032-3861(94)90465-0.
  22. Miguel O, Iruin JJ. Water transport properties in poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymers. J Appl Polym Sci, 73, 455 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990725)73:4<455::AIDAPP1>3.0.CO;2-Y.
  23. Villegas M, Vidaurre EFC, Habert AC, Gottifredi JC. Sorption and pervaporation with poly(3-hydroxybutyrate) membranes: methanol/methyl tert-butyl ether mixtures. J Membr Sci, 367, 103 (2011). https://doi.org/10.1016/j.memsci.2010.10.051.
  24. Villegas M, Vidaurre EFC, Gottifredi JC. Sorption and pervaporation of methanol/water mixtures with poly(3-hydroxybutyrate) membranes. Chem Eng Res Des, 94, 254 (2015). https://doi.org/10.1016/j.cherd.2014.07.030.
  25. Cheng ML, Sun YM. Effect of thermal history on the free volume properties of semi-crystalline poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes by positron annihilation lifetime spectroscopy. J Polym Sci Part B Polym Phys, 47, 855 (2009). https://doi.org/10.1002/polb.21691.
  26. Cheng ML, Sun YM. Relationship between free volume properties and structure of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes via various crystallization conditions. Polymer, 50, 5298 (2009). https://doi.org/10.1016/j.polymer.2009.09.035.
  27. Danafar F, Fakhru'l-Razi A, Salleha MAM, Biak DRA. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes: a review. Chem Eng J, 155, 37 (2009). https://doi.org/10.1016/j.cej.2009.07.052.
  28. Merchan-Merchan W, Saveliev AV, Kennedy L, Jimenez WC. Combustion synthesis of carbon nanotubes and related nanostructures. Prog Energy Combust Sci, 36, 696 (2010). https://doi.org/10.1016/j.pecs.2010.02.005.
  29. Hou PX, Liu C, Cheng HM. Purification of carbon nanotubes. Carbon, 46, 2003 (2008). https://doi.org/10.1016/j.carbon.2008.09.009.
  30. Huh M, Jung MH, Park YS, Kim BJ, Kang MS, Holden PJ, Yun SI. Effect of carbon nanotube functionalization on the structure and properties of poly(3-hydroxybutyrate)/MWCNTs biocomposites. Macromol Res, 22, 765 (2014). https://doi.org/10.1007/s13233-014-2141-7.
  31. Choi S, Park KH, Lee S, Koh KH. Raman spectra of nano-structured carbon films synthesized using ammonia-containing feed gas. J Appl Phys, 92, 4007 (2002). https://doi.org/10.1063/1.1499233.
  32. Maldonado S, Morin S, Stevenson KJ. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon, 44, 1429 (2006). https://doi.org/10.1016/j.carbon.2005.11.027.
  33. Liu L, Qin Y, Guo ZX, Zhu D. Reduction of solubilized multiwalled carbon nanotubes. Carbon, 41, 331 (2003). https://doi.org/10.1016/S0008-6223(02)00286-5.
  34. Yeom CK, Lee JM, Hong YT, Choi KY, Kim SC. Analysis of permeation transients of pure gases through dense polymeric membranes measured by a new permeation apparatus. J Membr Sci, 166, 71 (2000). https://doi.org/10.1016/S0376-7388(99)00252-5.
  35. Kim JY, Han SI, Hong S. Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer, 49, 3335 (2008). https://doi.org/10.1016/j.polymer.2008.05.024.
  36. Moaddeb M, Koros WJ. Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J Membr Sci, 125, 143 (1997). https://doi.org/10.1016/S0376-7388(96)00251-7.
  37. Chung TS, Chan SS, Wang R, Lu Z, He C. Characterization of permeability and sorption in Matrimid/$C_{60}$ mixed matrix membranes. J Membr Sci, 211, 91 (2003). https://doi.org/10.1016/S0376-7388(02)00385-X.