Browse > Article
http://dx.doi.org/10.5714/CL.2017.21.116

Biocomposite membranes based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and multiwall carbon nanotubes for gas separation  

Huh, Mongyoung (Korea Institute of Carbon Convergence Technology)
Lee, Hye Min (Department of Chemistry, Sangmyung University)
Park, Young Soo (Korea Institute of Carbon Convergence Technology)
Yun, Seok Il (Department of Chemical Engineering and Material Science, Sangmyung University)
Publication Information
Carbon letters / v.21, no., 2017 , pp. 116-121 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Miguel O, Iruin JJ. Water transport properties in poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymers. J Appl Polym Sci, 73, 455 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990725)73:4<455::AIDAPP1>3.0.CO;2-Y.   DOI
2 Villegas M, Vidaurre EFC, Habert AC, Gottifredi JC. Sorption and pervaporation with poly(3-hydroxybutyrate) membranes: methanol/methyl tert-butyl ether mixtures. J Membr Sci, 367, 103 (2011). https://doi.org/10.1016/j.memsci.2010.10.051.   DOI
3 Villegas M, Vidaurre EFC, Gottifredi JC. Sorption and pervaporation of methanol/water mixtures with poly(3-hydroxybutyrate) membranes. Chem Eng Res Des, 94, 254 (2015). https://doi.org/10.1016/j.cherd.2014.07.030.   DOI
4 Cheng ML, Sun YM. Effect of thermal history on the free volume properties of semi-crystalline poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes by positron annihilation lifetime spectroscopy. J Polym Sci Part B Polym Phys, 47, 855 (2009). https://doi.org/10.1002/polb.21691.   DOI
5 Cheng ML, Sun YM. Relationship between free volume properties and structure of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes via various crystallization conditions. Polymer, 50, 5298 (2009). https://doi.org/10.1016/j.polymer.2009.09.035.   DOI
6 Danafar F, Fakhru'l-Razi A, Salleha MAM, Biak DRA. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes: a review. Chem Eng J, 155, 37 (2009). https://doi.org/10.1016/j.cej.2009.07.052.   DOI
7 Merchan-Merchan W, Saveliev AV, Kennedy L, Jimenez WC. Combustion synthesis of carbon nanotubes and related nanostructures. Prog Energy Combust Sci, 36, 696 (2010). https://doi.org/10.1016/j.pecs.2010.02.005.   DOI
8 Choi S, Park KH, Lee S, Koh KH. Raman spectra of nano-structured carbon films synthesized using ammonia-containing feed gas. J Appl Phys, 92, 4007 (2002). https://doi.org/10.1063/1.1499233.   DOI
9 Hou PX, Liu C, Cheng HM. Purification of carbon nanotubes. Carbon, 46, 2003 (2008). https://doi.org/10.1016/j.carbon.2008.09.009.   DOI
10 Huh M, Jung MH, Park YS, Kim BJ, Kang MS, Holden PJ, Yun SI. Effect of carbon nanotube functionalization on the structure and properties of poly(3-hydroxybutyrate)/MWCNTs biocomposites. Macromol Res, 22, 765 (2014). https://doi.org/10.1007/s13233-014-2141-7.   DOI
11 Maldonado S, Morin S, Stevenson KJ. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon, 44, 1429 (2006). https://doi.org/10.1016/j.carbon.2005.11.027.   DOI
12 Liu L, Qin Y, Guo ZX, Zhu D. Reduction of solubilized multiwalled carbon nanotubes. Carbon, 41, 331 (2003). https://doi.org/10.1016/S0008-6223(02)00286-5.   DOI
13 Yeom CK, Lee JM, Hong YT, Choi KY, Kim SC. Analysis of permeation transients of pure gases through dense polymeric membranes measured by a new permeation apparatus. J Membr Sci, 166, 71 (2000). https://doi.org/10.1016/S0376-7388(99)00252-5.   DOI
14 Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR. The strategies of molecular architecture and modification of polyimide-based membranes for $CO_2$ removal from natural gas: a review. Prog Polym Sci, 34, 561 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.004.   DOI
15 Baker RW. Future directions of membrane gas separation technology. Ind Eng Chem Res, 41, 1393 (2002). https://doi.org/10.1021/ie0108088.   DOI
16 Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art. Ind Eng Chem Res, 48, 4638 (2009). https://doi.org/10.1021/ie8019032.   DOI
17 Shao L, Low BT, Chung TS, Greenberg AR. Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci, 327, 18 (2009). https://doi.org/10.1016/j.memsci.2008.11.019.   DOI
18 Yampolskii Y. Polymeric gas separation membranes. Macromolecules, 45, 3298 (2012). https://doi.org/10.1021/ma300213b.   DOI
19 Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol, 81, 243 (2011). https://doi.org/10.1016/j.seppur.2011.07.042.   DOI
20 Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM. Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol, 75, 229 (2010). https://doi.org/10.1016/j.seppur.2010.08.023.   DOI
21 Nasir R, Mukhtar H, Man Z, Mohshim DF. Material advancements in fabrication of mixed-matrix membranes. Chem Eng Technol, 36, 717 (2013). https://doi.org/10.1002/ceat.201200734.   DOI
22 Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS. Rapid transport of gases in carbon nanotubes. Phys Rev Lett, 89, 185901 (2002). https://doi.org/10.1103/PhysRevLett.89.185901.   DOI
23 Surapathi A, Herrera-Alonso J, Rabie F, Martin S, Marand E. Fabrication and gas transport properties of SWNT/polyacrylic nanocomposite membranes. J Membr Sci, 375, 150 (2011). https://doi.org/10.1016/j.memsci.2011.03.034.   DOI
24 Kim JY, Han SI, Hong S. Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer, 49, 3335 (2008). https://doi.org/10.1016/j.polymer.2008.05.024.   DOI
25 Moaddeb M, Koros WJ. Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J Membr Sci, 125, 143 (1997). https://doi.org/10.1016/S0376-7388(96)00251-7.   DOI
26 Chung TS, Chan SS, Wang R, Lu Z, He C. Characterization of permeability and sorption in Matrimid/$C_{60}$ mixed matrix membranes. J Membr Sci, 211, 91 (2003). https://doi.org/10.1016/S0376-7388(02)00385-X.   DOI
27 Ismail AF, Goh PS, Sanip SM, Aziz M. Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep Purif Technol, 70, 12 (2009). https://doi.org/10.1016/j.seppur.2009.09.002.   DOI
28 Fonseca A, Reijerkerk S, Potreck J, Nijmeijer K, Mekhalif Z, Delhalle J. Very short functionalized carbon nanotubes for membrane applications. Desalination, 250, 1150 (2010). https://doi.org/10.1016/j.desal.2009.09.130.   DOI
29 Aroon MA, Ismail AF, Montazer-Rahmati MM, Matsuura T. Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes. J Membr Sci, 364, 309 (2010). https://doi.org/10.1016/j.memsci.2010.08.023.   DOI
30 Kim S, Chen L, Johnson JK, Marand E. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci, 294, 147 (2007). https://doi.org/10.1016/j.memsci.2007.02.028.   DOI
31 Sharma RB, Late DJ, Joag DS, Govindaraj A, Rao CNR. Field emission properties of boron and nitrogen doped carbon nanotubes. Chem Phys Lett, 428, 102 (2006). https://doi.org/10.1016/j.cplett.2006.06.089.   DOI
32 Zhao A, Masa J, Schuhmann W, Xia W. Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions. J Phys Chem C, 117, 24283 (2013). https://doi.org/10.1021/jp4059438.   DOI
33 Jang JW, Lee CE, Lyu SC, Lee TJ, Lee CJ. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl Phys Lett, 84, 2877 (2004). https://doi.org/10.1063/1.1697624.   DOI
34 Verhoogt H, Ramsay BA, Favis BD. Polymer blends containing poly(3-hydroxyalkanoate)s. Polymer, 35, 5155 (1994). https://doi.org/10.1016/0032-3861(94)90465-0.   DOI
35 Liang EJ, Ding P, Zhang HR, Guo XY, Du ZL. Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine. Diamond Relat Mater, 13, 69 (2004). https://doi.org/10.1016/j.diamond.2003.08.025.   DOI
36 Yadav RM, Dobal PS, Shripathi T, Katiyar RS, Srivastava ON. Effect of growth temperature on bamboo-shaped carbon-nitrogen (CN) nanotubes synthesized using ferrocene acetonitrile precursor. Nanoscale Res Lett, 4, 197 (2009). https://doi.org/10.1007/s11671-008-9225-2.   DOI
37 Nxumalo EN, Coville NJ. Nitrogen doped carbon nanotubes from organometallic compounds: a review. Materials, 3, 2141 (2010). https://doi.org/10.3390/ma3032141.   DOI