Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.420

(PIM-co-Ellagic Acid)-based Copolymer Membranes for High Performance CO2 Separation  

Hossain, Iqubal (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University)
Husna, Asmaul (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University)
Kim, Dongyoung (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University)
Kim, Tae-Hyun (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University)
Publication Information
Membrane Journal / v.30, no.6, 2020 , pp. 420-432 More about this Journal
Abstract
Random copolymers made of both 'polymer of intrinsic microporosity (PIM-1)' and Ellagic acid were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and flat-type hydrophilic ellagic acid, the membranes obtained from these random copolymers [(PIM-co-EA)-x] showed high CO2 permeability (> 4516 Barrer) with high CO2/N2 (> 23~26) and CO2/CH4 (> 18~19) selectivity, that surpassed the Robeson upper bound (2008) for both pairs of the gas mixture. Incorporation of flat-type ellagic acid into the PIM-1 not only enhances the gas permeability by disturbing the kinked structure of PIM-1 but also increases the selectivity of CO2 over N2 and CH4, due to an increase of rigidity and polarity in the resultant copolymer membranes.
Keywords
$CO_2$ separation; random copolymer; ellagic acid; PIM-polymer; gas permeability-selectivity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, and M. D. Guiver, "Advances in high permeability polymer-based membrane materials for CO2 separations", Energy Environ. Sci., 9, 1863 (2016).   DOI
2 A. B. Rao and E. S. Rubin, "A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control", Environ. Sci. Technol., 36, 4467 (2002).   DOI
3 I. Hossain, S. Y. Nam, C. Rizzuto, G. Barbieri, E. Tocci, and T.-H. Kim, "PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances", J. Memb. Sci., 574, 270 (2019).   DOI
4 N. Du, H. B. Park, M. M. Dal-Cin, and M. D. Guiver, "Advances in high permeability polymeric membrane materials for CO2 separations", Energy Environ. Sci., 5, 7306 (2012).   DOI
5 I. Hossain, D. Kim, A. Z. Al Munsur, J. M. Roh, H. B. Park, and T.-H. Kim, "PEG/PPG-PDMS-based cross-linked copolymer membranes prepared by ROMP and in situ membrane casting for CO2 sep aration: An approach to endow rubbery materials with properties of rigid polymers", ACS Appl. Mater. Interfaces, 12, 27286 (2020).   DOI
6 H. You, I. Hossain, and T.-H. Kim, "Piperazinium-mediated crosslinked polyimide-polydimethylsiloxane (PI-PDMS) copolymer membranes: The effect of PDMS content on CO2 separation", RSC Adv., 8, 1328 (2018).   DOI
7 D. Kim, I. Hossain, Y. Kim, O. Choi, and T.-H. Kim, "PEG/PPG-PDMS-adamantane-based crosslinked terpolymer using the ROMP technique to prepare a highly permeable and CO2-selective polymer membrane", Polymers, 12, 1 (2020).
8 I. Hossain, A. Z. Al Munsur, O. Choi, and T.-H. Kim, "Bisimidazolium PEG-mediated crosslinked 6FDA-durene polyimide membranes for CO2 separation", Sep. Purif. Technol., 224, 180 (2019).   DOI
9 J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and preparation of PEG-polyimide copolymer asymmetric flat sheet membranes for carbon dioxide separation", Membr. J., 25, 547 (2015).   DOI
10 L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Memb. Sci., 62, 165 (1991).   DOI
11 L. M. Robeson, "The upper bound revisited", J. Memb. Sci., 320, 390 (2008).   DOI
12 S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for CO2 capture", Membr. J., 29, 223 (2019).   DOI
13 S. Y. Yoo and H. B. Park, "Membrane-based direct air capture technologies", Membr. J., 30, 173 (2020).   DOI
14 N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, and M. D. Guiver, "Polymer nanosieve membranes for CO2-capture applications", Nat. Mater., 10, 372 (2011).   DOI
15 P. M. Budd, K. J. Msayib, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. B. McKeown, and D. Fritsch, "Gas separation membranes from polymers of intrinsic microporosity", J. Memb. Sci., 251, 263 (2005).   DOI
16 N. Prasetya, N. F. Himma, P. D. Sutrisna, I G. Wenten, and B. P. Ladewig, "A review on emerging organic-containing microporous material membranes for carbon capture and separation", Chem. Eng. J., 391, 123575 (2020).   DOI
17 C. L. Staiger, S. J. Pas, A. J. Hill, and C. J. Cornelius, "Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer", Chem. Mater., 20, 2606 (2008).   DOI
18 N. B. McKeown, "Polymers of intrinsic microporosity", ISRN Mater. Sci., 2012, 1 (2012).   DOI
19 N. B. McKeown and P. M. Budd, "Exploitation of intrinsic microporosity in polymer-based materials", Macromolecules, 43, 5163 (2010).   DOI
20 C. Ma and J. J. Urban, "Polymers of intrinsic microporosity (PIMs) gas separation membranes: A mini review", Proc. Nat. Res. Soc., 2, 02002 (2018).   DOI
21 W. H. Lee, J. G. Seong, X. Hu, and Y. M. Lee, "Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade-off lines", J. Polym. Sci., 1 (2020).
22 S. Neumann, G. Bengtson, D. Meis, and V. Filiz, "Thermal cross linking of novel azide modified polymers of intrinsic microporosity-effect of distribution and the gas separation performance", Polymers, 11, 1241 (2019).   DOI
23 B. Comesana-Gandara, J. Chen, C. G. Bezzu, M. Carta, I. Rose, M. C. Ferrari, E. Esposito, A. Fuoco, J. C. Jansen, and N. B. McKeown, "Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity", Energy Environ. Sci., 12, 2733 (2019).   DOI
24 X. Chen, Z. Zhang, L. Wu, X. Liu, S. Xu, J.E. Efome, X. Zhang, and N. Li, "Polymers of intrinsic microporosity having bulky substitutes and cross-linking for gas separation membranes", ACS Appl. Polym. Mater., 2, 987 (2020).   DOI
25 J. W. Jeon, D. G. Kim, E. H. Sohn, Y. Yoo, Y. S. Kim, B. G. Kim, and J. C. Lee, "Highly carboxylate-functionalized polymers of intrinsic microporosity for CO2-selective polymer membranes", Macromolecules, 50, 8019 (2017).   DOI
26 N. Du, M. M. Dal-Cin, G. P. Robertson, and M. D. Guiver, "Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation", Macromolecules, 45, 5134 (2012).   DOI
27 K. Halder, S. Neumann, G. Bengtson, M. M. Khan, V. Filiz, and V. Abetz, "Polymers of intrinsic microporosity postmodified by vinyl groups for membrane applications", Macromolecules, 51, 7309 (2018).   DOI
28 I. Hossain, A. Z. Al Munsur, and T.-H. Kim, "A facile synthesis of (PIM-polyimide)-(6FDA-durenepolyimide) copolymer as novel polymer membranes for CO2 separation", Membranes, 9, 113 (2019).   DOI
29 E. M. Daniel, A. S. Krupnick, Y. H. Heur, J. A. Blinzler, R. W. Nims, and G. D. Stoner, "Extraction, stability, and quantitation of ellagic acid in various fruits and nuts", J. Food Compos. Anal., 2, 338 (1989).   DOI
30 F. M. Mady and M. A. Shaker, "Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles", Int. J. Nanomedicine, 12, 7405 (2017).   DOI
31 I. Kang, T. Buckner, N. F. Shay, L. Gu, and S. Chung, "Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms", Adv. Nutr., 7, 961 (2016).   DOI
32 J. L. Maas, G. J. Galletta, and G. D. Stoner, "Ellagic acid, an anticarcinogen in fruits, especially in strawberries: A review", HortScience., 26, 10 (1991).   DOI
33 M. Z. Hussein, S. H. Al Ali, Z. Zainal, and M. N. Hakim, "Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent", Int. J. Nanomedicine, 6 , 1373 (2011).
34 T. Sakaguchi and T. Hashimoto, "Synthesis of poly (diphenylacetylene)s bearing various polar groups and their gas permeability", Polym. J., 46, 391 (2014).   DOI
35 J. Liu, Y. Xiao, K. S. Liao, and T. S. Chung, "Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin", J. Memb. Sci., 523, 92 (2017).   DOI
36 X. M. Wu, Q. G. Zhang, P. J. Lin, Y. Qu, A. M. Zhu, and Q. L. Liu, "Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol", J. Memb. Sci., 493, 147 (2015).   DOI
37 S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, "Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1)", J. Memb. Sci., 333, 125 (2009).   DOI
38 J. Ahn, W. J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, and M. D. Guiver, "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)", J. Memb. Sci., 346, 280 (2010).   DOI