• Title/Summary/Keyword: Material design parameter

Search Result 403, Processing Time 0.028 seconds

Design and analysis tool for optimal interconnect structures (DATOIS) (최적회로 연결선 구조를 위한 설계 및 해석도구 (DATOIS))

  • 박종흠;김준희;김석윤
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.7
    • /
    • pp.20-29
    • /
    • 1998
  • As the packing density of ICs in recent submicron IC design increases, interconnects gain importance. Because interconnects directly affect on two major components of circuit performance, power dissipation and operating speed, circuit engineers are concerned with the optimal design of interconnects and the aid tool to design them. When circuit models of interconnects are given (including geometry and material information), the analysis process for the given structure is not an easy task, but conversely, it is much more difficult to design an interconnect structure with given circuit characteristics. This paper focuses on the latter process that has not been foucsed on much till now due to the complexity of the problem, and prsents a design aid tool(DATOIS) to synthesize interconnects. this tool stroes the circuit performance parameters for normalized interconnect geometries, and has two oeprational modes:analysis mode and synthesis mode. In the analysis mode, circuit performance parameters are obtained by searching the internal database for a given geometry and interpolates results if necessary . In thesynthesis mode, when a given circuit performance parameter satisfies a set of geometry condition in the database, those geometry structures are printed out.

  • PDF

A Study on the Expression Characteristics by the Development of Technology In the Interior Design - Focused on the Public Spaces after 60's - (테크놀로지의 발전이 실내건축디자인에 미친 표현특성에 관한 연구 - 60년대 이후 공공공간을 중심으로 -)

  • Hwang, Byung-Soo;Choi, Sang-Hun
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.10a
    • /
    • pp.139-142
    • /
    • 2005
  • The design of the period after 20th century has rapid change. It is due to the improvement and the change of technology which is composed of the parameter that is the science and the machine after the Industrial Revolution. The technology becomes the criteria of the value and appears to the symbol of the period. The purpose of this study is to define the expression characteristics by the development of technology and to examine how specificly it makes the influence on the change of Interior expression characteristics. Interior design can be expressed more creative and 4th dimensional spaces by the development of technology from the space, form and material side

  • PDF

Six Sigma Robust Design of Composite Hand for LCD Glass Transfer Robot (LCD 유리 이송용 복합재료 로봇 핸드의 식스 시그마 강건설계)

  • Nam Hyunwook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.455-461
    • /
    • 2005
  • This research studied robust design of composite hand for LTR (LCD glass Transfer Robot). $1^{st}$ DOE (Design of Experiment) was conducted to find out vital few Xs. 108 experiments were performed and their results were statistically analyzed. Pareto chart analysis shows that the geometric parameters (height and width of composite beam) are more important than material parameters $(E_{1},\;E_{2})$ or stacking sequence angle. Also, the stacking sequence of mid-layer is more important than that of outer-layer. The main effect plots shows that the maximum deflection of LTR hand is minimized with increasing height, width of beam and layer thickness. $2^{nd}$ DOE was conducted to obtain RSM (Response Surface Method) equation. 25 experiments were conducted. The CCD (Central Composite Design) technique with four factors was used. The coefficient of determination $(R^{2})$ for the calculated RSM equation was 0.989. Optimum design was conducted using the RSM equation. Multi-island genetic algorithm was used to optimum design. Optimum values for beam height, beam width, layer thickness and beam length were 24.9mm, 186.6mnL 0.15mm and 2402.4mm respectively. An approximate value of 0.77mm in deflection was expected to be a maximum under the optimum conditions. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the standard deviation of design parameter should be con trolled within $2{\%}$ of average design value

A Study of the Effect of Imperfection on Buckling Strength in Thin Cylindrical Shells under Bending (초기결함의 영향성을 고려한 원통형 쉘의 휨 좌굴 강도 연구)

  • Jang, Min-Seo;Park, Jong-Sup;Lee, Yun-Woo;Kang, Soung-Yong;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2263-2271
    • /
    • 2015
  • The thin cylindrical shell structure under compression should be checked with buckling stability. Initial imperfection effects on buckling strength has been investigated by many researchers. Even though there have been a number of these studies, more studies of buckling strength with various initial imperfections are still necessary. In Eurocode, there is a design parameter that is applicable only on specific imperfection by section thickness rather than on various initial imperfection. In this study, structural analyses, using geometry and material nonlinear analysis, of cylindrical buckling strength with various initial imperfection were performed and compared with Eurocode design strength and Finite Element Method (FEM) analysis results. Moreover, the modified design parameter, which gives more exact prediction result of buckling strength under bending with initial imperfection, is proposed for various initial imperfections.

Optimal Design of an MRI Device Considering the Homogeneity of the Magnetic Field (자기장의 균일성을 고려한 자기공명장치의 최적설계)

  • Lee, Jung-Hoon;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.654-659
    • /
    • 2008
  • This paper is to suggest a concept design of the permanent magnet type magnetic resonance imaging (MRI) device based on the parameter optimization method. Pulse currents in the gradient coils will introduce the effect of eddy currents in the ferromagnetic material, which will worsen the quality of imaging. In order to equalize the magnetic flux in the MRI device for good imaging, the eddy current effect in the ferromagnetic material must be taken into account. This study attempts to use the design of experiment (DOE) and the response surface method (RSM) for equalizing the magnetic flux of the permanent magnet type MRI device using that the magnetic flux can be calculated directly using a commercial finite element analysis package. As a result, optimal shapes of the pole and the yoke of the PM type MRI device can be obtained. The commercial package, ANSYS, is used for analyzing the magnetic field problem and obtaining the resultant magnetic flux.

Optimization of CMP Process parameter using DOE(Design of Experiment) Technique (DOE(Design of Experiment)기법을 통한 CMP 공정 변수의 최적화)

  • Lee, Kyoung-Jin;Park, Sung-Woo;Park, Chang-Jun;Kim, Ki-Wook;Jeong, So-Young;Kim, Chul-Bok;Choi, Woon-Shik;Kim, Sang-Yong;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.228-232
    • /
    • 2002
  • The rise throughput and the stability in the device fabrication can be obtained by applying chemical mechanical polishing(CMP) process in 0.18 ${\mu}m$ semiconductor device. However it does have various problems due to the CMP equipment. Especially, among the CMP components, process variables are very important parameters in determining removal rate and non-uniformity. In this paper, We studied the DOE(design of experiment) method for the optimized CMP process. Various process variations, such as table and head speed, slurry flow rate and down force, have investigated in the viewpoint of removal rate and non-uniformity. Through the above DOE results, we could set-up the optimal process parameters.

  • PDF

Impacts of Process and Design Parameters on the Electrical Characteristics of High-Voltage DMOSFETs (공정 및 설계 변수가 고전압 LDMOSFET의 전기적 특성에 미치는 영향)

  • 박훈수;이영기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.911-915
    • /
    • 2004
  • In this study, the electrical characteristics of high-voltage LDMOSFET fabricated by the existing CMOS technology were investigated depending on its process and design parameter. In order to verify the experimental data, two-dimensional device simulation was carried out simultaneously. The off- state breakdown voltages of n-channel LDMOSFETs were increased nearly in proportional to the drift region length. For the case of decreasing n-well ion implant doses from $1.0\times{10}^{13}/cm^2$ to $1.0\times{10}^{12}/cm^2$, the off-state breakdown voltage was increased approximately two times. The on-resistance was also increased about 76 %. From 2-D simulation, the increase in the breakdown voltage was attributed to a reduction in the maximum electric field of LDMOS imolanted with low dose as well as to a shift toward n+ drain region. Moreover, the on- and off-state breakdown voltages were also linearly increased with increasing the channel to n-tub spacing due to the reduction of impact ionization at the drift region. The experimental and design data of these high-voltage LDMOS devices can widely applied to design smart power ICs with low-voltage CMOS control and high-voltage driving circuits on the same chip.

The Effect of Reduction of Friction Heat by Micro Dimple on the Sliding Surface of Elastomer (탄성중합체 표면의 마이크로 딤플에 의한 발열저감효과)

  • Kim, Gun Wan;Yoo, Myung Ho;Lee, Taek Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.847-853
    • /
    • 2013
  • Micro-dimples on sliding surfaces have been investigated to reduce the frictional forces on metal bearing surfaces; however, for an elastomer, such as thermoplastic polyurethane (TPU), this has not been studied. The material properties of an elastomer are affected by temperature, and this can shorten the life of the elastomer. In this paper, micro-dimples were applied on the surface of an elastomer in order to reduce the frictional heating, which was experimentally investigated using pin-on-disk apparatus while the surface temperature was measured. To obtain optimal design parameters, the design of the experiment was applied, and the shape of the section, size, depth and density of micro-dimples were selected as the design parameters. The results show that the size of the dimple is the most important design parameter.

The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer (소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석)

  • Shin, Ku-kyun;Seo, Youngsoo;Kang, Myengwhan;Jeon, Jaejin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.568-574
    • /
    • 2012
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, material and damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction.

  • PDF

Designing of Stocker Robot's Fork Base using Axiomatic Design Method (설계의 공리를 적용한 Stocker Robot의 Fork Base설계)

  • Back, Tae-Jin;Paik, Cheol-Jun;Yoon, Jong-Bo;Moon, In-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.75-81
    • /
    • 2011
  • Today, FPD manufactures are eager to develop larger and larger glass to become the prime market leader. To follow this need, larger AMHS(Automated Material Handling System) development is essential. The radical increase of glass/cassette weight puts a lot of pressure on stocker robot's dual arms, which can cause a damage of expensive glasses and contaminate a clean room facility. In this paper the axiomatic design method is used to institute a design guideline to evenly distribute a pressure throughout the stocker robot structure.