• Title/Summary/Keyword: Material analyses

Search Result 1,847, Processing Time 0.024 seconds

Seismic performance of eccentrically braced frames with high strength steel combination

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1517-1539
    • /
    • 2015
  • Eccentrically braced frames (EBFs) often use conventional steel with medium yield strength. This system requires structural members with large cross-sections for well seismic behavior, which leads to increased material costs. In eccentrically braced frames with high strength steel combination (HSS-EBFs), links use Q345 steel (specified nominal yield strength 345 MPa), braces use Q345 steel or high strength steel while other structural members use high strength steel (e.g., steel Q460 with the nominal yield strength of 460 MPa or steel Q690 with the nominal yield strength of 690 MPa). For this approach can result in reduced steel consumption and increased economic efficiency. Several finite element models of both HSS-EBFs and EBFs are established in this paper. Nonlinear hysteretic analyses and nonlinear time history analyses are conducted to compare seismic performance and economy of HSS-EBFs versus EBFs. Results indicate that the seismic performance of HSS-EBFs is slightly poorer than that of EBFs under the same design conditions, and HSS-EBFs satisfy seismic design codes and reduce material costs.

Construction stage analysis of three-dimensional cable-stayed bridges

  • Atmaca, Barbaros;Ates, Sevket
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.413-426
    • /
    • 2012
  • In this paper, nonlinear static analysis of three-dimensional cable stayed bridges is performed for the time dependent materials properties such as creep, shrinkage and aging of concrete and relaxation of cable. Manavgat Cable-Stayed Bridge is selected as an application. The bridge located in Antalya, Turkey, was constructed with balanced cantilever construction method. Total length of the bridge is 202 m. The bridge consists of one $\ddot{e}$ shape steel tower. The tower is at the middle of the bridge span. The construction stages and 3D finite element model of bridge are modeled with SAP2000. Large displacement occurs in these types of bridges so geometric nonlinearity is taken into consideration in the analysis by using P-Delta plus large displacement criterion. The time dependent material strength and geometric variations are included in the analysis. Two different finite element analyses carried out which are evaluated with and without construction stages and results are compared with each other. As a result of these analyses, variation of internal forces such as bending moment, axial forces and shear forces for bridge tower and displacement and bending moment for bridge deck are given with detailed. It is seen that construction stage analysis has a remarkable effect on the structural behavior of the bridge.

Comprehensive Evaluation of Results of Ground Response analysis Round Robin Test (지반응답해석 Round Robin Test 결과 종합적 분석 연구)

  • Park, Du-Hee;Yoon, Jong-Ku;Park, Young-Ho;Ahn, Chang-Yoon;Kim, Jae-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.334-344
    • /
    • 2007
  • This paper performed a comprehensive evaluation of the results of the 2007 Ground Response Analysis Round Robin Test, at which 14 institutions and individuals participated. The submitted results showed significant discrepancies. The main reason for this difference has been attributed to the dispersion in the estimated shear wave velocity profiles and dynamic soil curves. It is therefore concluded that accurate evaluation of the material properties is of primary importance for reliable estimation of the ground vibration. Evaluation of the effect of the analysis method showed that the equivalent linear analysis overestimates the peak ground acceleration, but overall the results are similar to a total stress nonlinear analysis. However, the total and effective stress nonlinear analyses show distinct discrepancies, the effective stress analyses consistently resulting in a lower response due to the development of the excess pore water pressure and thus softer response.

  • PDF

A Study on the Fracture Behavior of a Crack in Gas Pipelines Considering Constraint Effects (구속효과를 고려한 가스배관 결함의 파괴거동해석)

  • Shim, Do-Jun;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.1-6
    • /
    • 2000
  • FFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it assumes that J-integral uniquely characterizes crack-tip stress-strain fields. However, it has been shown that it is not sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to Investigate the fracture behavior of a crack in gas pipeline by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature$(24^{\circ}C)$ and low temperature$(-40^{\circ}C)$ to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects.

  • PDF

Prediction of Welding Residual Stress of Dissimilar Metal Weld of Nozzle using Finite Element Analyses (유한요소해석을 이용한 노즐 이종금속용접부의 용접잔류응력 예측)

  • Huh, Nam-Su;Kim, Jong-Wook;Choi, Suhn;Kim, Tae-Wan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.83-84
    • /
    • 2008
  • The primary water stress corrosion cracking (PWSCC) of dissimilar metal weld based on Alloy 82/182 is one of major issues in material degradation of nuclear components. It is well known that the crack initiation and growth due to PWSCC is influenced by material's susceptibility to PWSCC and distribution of welding residual stress. Therefore, modeling the welding residual stress is of interest in understanding crack formation and growth in dissimilar metal weld. Currently in Korea, a numerical round robin study is undertaken to provide guidance on the welding residual stress analysis of dissimilar metal weld. As a part of this effort, the present paper investigates distribution of welding resisual stress of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two-dimensional thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed design and fabrication data. The present results are compared with those from other participants, and more works incorporating physical measurements are going to be performed to quantify the uncertainties relating to modelling assumptions.

  • PDF

Assessment of Material Properties Using Finite Element Analysis for Small Punch Creep Testing (SP 크리프 시험의 유한요소해석을 이용한 재료물성 평가)

  • Park, Tae-Kyu;Ma, Young-Wha;Yoon, Kee-Bong;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.511-516
    • /
    • 2001
  • Recently small punch creep testing (or miniature disc bend creep test) has received much attention through European collaborative research projects. This method was considered as a substitute for the conventional creep rupture testing by which the residual creep life is measured from the specimen taken out from serviced components of high temperature plants. It would be beneficial if the material creep properties such as power law creep constants as well as the creep rupture life can be measured from the small punch creep test. In this paper a method of assessing creep constants from the small punch creep testing is proposed. Finite element analyses were performed to investigate evolution of stress and strain rate at the weakest locations of the small punch creep specimen. Elastic-plastic-secondary creep analyses were carried out. The estimation equations for creep constants by the small punch creep testing are proposed based on the finite analysis results. Small punch creep tests were also performed with 9Cr steel and the accuracy of the proposed equation was verified by the experimental results.

  • PDF

Deformation Analysis of a Metal Mask for the Screen Printing of Micro Bumps (스크린 인쇄용 미세 범프 금속마스크의 변형특성 해석)

  • Lee, K.Y.;Lee, H.J.;Kim, J.B.;Park, K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.408-414
    • /
    • 2012
  • Screen printing is a printing method that uses a woven mesh to support an ink-blocking stencil by transferring ink or other printable materials in order to form an image onto a substrate. Recently, the screen printing method has applied to micro-electronic packaging by using solder paste as a printable material. For the screen printing of solder paste, metal masks containing a number of micro-holes are used as a stencil material. The metal mask undergoes deformation when it is installed in the screen printing machine, which results in the deformation of micro-holes. In the present study, finite element (FE) analysis was performed to predict the amount of deformation of a metal mask. For an efficient calculation of the micro-holes of the metal mask, the sub-domain analysis method was applied to perform FE analyses connecting the global domain (the metal mask) and the local domain (micro-holes). The FE analyses were then performed to evaluate the effects of slot designs on the deformation characteristics, from which more uniform and adjustable deformation of the metal mask can be obtained.

FEA and Experiment Investigation on the Friction Reduction for Ultrasonic Vibration Assisted Deep Drawing (초음파 진동 딥 드로잉 공정에서의 마찰감소효과 분석을 위한 유한요소해석 및 실험)

  • Kim, S.W.;Son, Y.G.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.413-418
    • /
    • 2014
  • The current study presents experimental and numerical results on the effect of ultrasonic vibrations on a cylindrical cup drawing of a cold rolled steel sheet(SPCC). An experimental apparatus, which can superimpose high frequency oscillations during deep drawing, was constructed by installing on the tooling ultrasonic vibration generators consisting of a piezoelectric transducer and a resonator. Conventional and vibration-assisted cylindrical deep drawing tests were conducted for various drawing ratios, and the limiting drawing ratios(LDR) for both methods were compared. To evaluate quantitatively the contribution from the ultrasonic vibrations to the reduction of friction between tools and material finite element analyses were conducted. Through a series of parametric analyses, the friction coefficients, which minimized the differences of punch load data between the experiments and simulations, were determined. The results show that the application of ultrasonic vibration effectively improves the LDR by reducing the friction between the tools and the material.

Green Consumption Behavior According to the Lifestyles of College Students (대학생 소비자의 라이프스타일에 따른 녹색소비행동에 관한 연구)

  • Kim, Hyo-Chung
    • Korean Journal of Human Ecology
    • /
    • v.20 no.6
    • /
    • pp.1135-1151
    • /
    • 2011
  • This study examined green consumption behavior according to the lifestyles of college students. The data were collected from 314 college students in Yeungnam region by a self-administered questionnaire. Frequencies, Cronbach's alpha, factor analysis, cluster analysis, chi-square tests, one-way analysis of variance, Duncan's multiple range tests, Pearson's correlation analysis, and multiple regression analyses were conducted by SPSS Windows V.18.0. According to the result of factor analysis, lifestyles were categorized into six factors: thrift-saving type, enthusiastic activity type, brand ostentation type, freedom-seeking type, material oriented type, and practice-seeking type. Cluster analysis showed respondents belonged to one of four groups: thrift practice group, indifference group, freedom-seeking group, and material ostentation group. The levels of green purchase behavior, green usage behavior and green disposal behavior of the respondents was not high. The thrift practice group showed higher levels of green purchase behavior, green usage behavior, and green disposal behavior. Finally, according to multiple regression analyses, environmental consciousness, knowledge about green consumption, lifestyle groups were the significant factors affecting green consumption behaviors. These results imply that green consumption education for college students should be activated to induce green life.

Carbonation Behavior of Fly Ash with Circulating Fluidized Bed Combustion (CFBC)

  • Bae, Soon Jong;Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.154-158
    • /
    • 2015
  • This paper investigates the reaction rates of $CO_2$ that stores carbonation through comparing the carbonation behavior between $Ca(OH)_2$ and fly ash with circulating fluidized bed combustion (CFBC) containing a large amount of free CaO. Because fly ash with CFBC contains abundant free CaO, it cannot be used as a raw material for concrete admixtures; hence, its usage is limited. Thus, it has been buried until now. In order to consider its reuse, we conduct carbonation reactions and investigate its rates. X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA), and X-ray fluorescence (XRF) are conducted for the physical and chemical analyses of the raw materials. Furthermore, we use a PH meter and thermometer to verify the carbonization rates. We set the content of the fly ash of CFBC, $Ca(OH)_2$, $CO_2$ flow rate, and water to 100 ~ 400 g, 30 ~ 120 g, 700 cc/min, and 300 ~ 1200 g, respectively, based on the content of the free CaO determined through the TG/DTA analyses. As a result, the carbonization rate of the fly ash with CFBC is the same as that of $Ca(OH)_2$, and it tends to increase linearly. Based on these results, we investigate the carbonization behavior as a function of the free CaO content contained in the raw material.