• Title/Summary/Keyword: Mass standards

Search Result 465, Processing Time 0.026 seconds

Design Sensitivity and Optimum Design of Monopile Support Structure in Offshore Wind Turbine (해상풍력발전기 모노파일 설계민감도해석 및 최적설계)

  • Lee, Ji-Hyun;Kim, Soo-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.78-87
    • /
    • 2014
  • Recently the offshore wind turbine development is requested to be installed off south-west coast and Jeju island in Korea. Reliable and robust support structures are required to meet the demand on the offshore wind turbine in harsh and rapidly varying environmental conditions. Monopile is the most preferred substructure in shallow water with long term experiences from the offshore gas and oil industries. This paper presents an optimum design of a monopile connection with grouted transition piece (TP) for the reliable and cost-effective design purposes. First, design loads are simulated for a 5 MW offshore wind turbine in site conditions off the southwest coast of Korea. Second, sensitivity analysis is performed to investigate the design sensitivity of geometry and material parameters of monopile connection based on the ultimate and fatigue capacities according to DNV standards. Next, optimization is conducted to minimize the total mass and resulted in 30% weight reduction and the optimum geometry and material properties of the monopile substructure of the fixed offshore wind turbine.

PCIA Cloud Service Modeling and Performance Analysis of Physical & Logical Resource Provisioning (PCIA 클라우드 서비스 모델링 및 자원 구성에 따른 성능 영향도 분석)

  • Yin, Binfeng;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.1-10
    • /
    • 2014
  • Cloud computing provides flexible and efficient mass data analysis platform. In this paper, we define a new resource provisioning architecture in the public cloud, named PCIA. In addition, we provide a service model of PCIA and its new naming scheme. Our model selects the proper number of physical or virtual resources based on the requirements of clients. By the analysis of performance variation in the PCIA, we evaluate the relationship between performance variation and resource provisioning, and we present key standards for cloud system constructions, which can be an important resource provisioning criteria for both cloud service providers and clients.

Development of particle focusing device to monitor various low pressure processes (다양한 조건의 저압 공정 모니터링을 위한 입자 집속 장치 개발)

  • Kim, Myungjoon;Kim, Dongbin;Kang, Sang-Woo;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2017
  • As semiconductor process was highly integrated, particle contamination became a major issue. Because particle contamination is related with process yields directly, particles with a diameter larger than half pitch of gate should be controlled. PBMS (Particle beam mass spectrometry) is one of powerful nano particle measurement device. It can measure 5~500 nm particles at ~ 100 mtorr condition in real time by in-situ method. However its usage is restricted to research filed only, due to its big device volume and high price. Therefore aperture changeable aerodynamic lenses (ACALs) which can control particle focusing characteristics by changing its aperture diameter was proposed in this study. Unlike conventional aerodynamic lenses which changes particle focusing efficiency when operating condition is changed, ACALs can maintain particle focusing efficiency. Therefore, it can be used for a multi-monitoring system that connects one PBMS and several process chambers, which greatly improves the commercialization possibility of the PBMS. ACALs was designed based on Stokes number and evaluated by numerical method. Numerical analysis results showed aperture diameter changeable aerodynamic lenses can focus 5 to 100 nm standard particles at 0.1 to 10 torr upstream pressure.

Boron removal from model water by RO and NF membranes characterized using S-K model

  • Kheriji, Jamel;Tabassi, Dorra;Bejaoui, Imen;Hamrouni, Bechir
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.193-207
    • /
    • 2016
  • Boron is one of the most problematic inorganic pollutants and is difficult to remove in water. Strict standards have been imposed for boron content in water because of their high toxicity at high concentrations. Technologies using membrane processes such as reverse osmosis (RO) and nanofiltration (NF) have increasingly been employed in many industrial sectors. In this work, removal of boron from model water solutions was investigated using polyamide reverse osmosis and nanofiltration membranes. RO-AG, RO-SG, NF-90 and NF-HL membranes were used to reduce the boron from model water at different operational conditions. To understand the boron separation properties a characterization of the four membranes was performed by determining the pure water permeability, surface charge and molecular weight cut-off. Thereafter, the effect of feed pressure, concentration, ionic strength, nature of ions in solution and pH on the rejection of boron were studied. The rejection of boron can reach up to 90% for the three membranes AG, SG and NF-90 at pH = 11. The Spiegler-Kedem model was applied to experimental results to determine the reflection coefficient of the membrane ${\sigma}$ and the solute permeability $P_s$.

Study on an Acceleration Sensor using Magnetoelastic Effect of an Amorphous Wire (비정질 세선의 자기탄성 효과를 이용한 가속도 센서 개발에 관한 연구)

  • Cho, H.J.;Son, D.L.;Lim, S.J.;Yang, J.M.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1993
  • We have constructed an acceleration sensor which is based on the maximum magnetic induction changes of amorphous wire as a measurand. The frequency bandwith of the constructed sensor depends on the mass of a sensing element. For $Co_{72.5}Si_{12.5}B_{15}$ amorphous wire, the bandwith is DC-700 Hz for $1{\times}10^{-3}kg$ sensing element and DC-200 Hz for $5{\times}10^{-3}kg$. The linearity of the acceleration sensor was less than 1% within the acceleration of 5 g.

  • PDF

Synthesis and Application of Metal Doped Silica Particles for Adsorptive Desulphurization of Fuels

  • Jabeen, Bushra;Rafique, Uzaira
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • Petroleum a vital commodity affecting every aspect of 21st century. Toxicity and adverse effects of sulphur as catalyst in petroleum products is of great concern required development of techniques for desulphurization in compliance with the International standards. Installation of desulphurizing units costs over $200 million per unit placing economic burden on developing countries like Pakistan. Present study analysis of commercial fuels (station petrol and jet fuel JP8) on gas chromatography-mass spectrometry (GC-MS) identified sulphur concentration of 19.94 mg/L and 21.75 mg/L, respectively. This scenario urged the researcher to attempt synthesis of material that is likely to offer good adsorption capacity for sulphur. Following protocol of sol-gel method, transition metals (Ni, Cu, Zn) solution is gelated with tetraethoxysilane (TEOS; silica precursor) using glycerol. Fourier transform infrared spectroscopy (FTIR) spectra revealed bonding of Zn-O, Cu-O, and Ni-O by stretching vibrations at $468cm^{-1}$, $617cm^{-1}$, and $468cm^{-1}$, respectively. Thiophene and Benzothiophene mixed in n-heptane and benzene (4:1) for preparation of Model Fuels I and II, respectively. Each of silica based metal was applied as adsorbent in batch mode to assess the removal efficiency. Results demonstrated optimal desulphurization of more than 90% following efficacy order as Si-Ni > Si-Zn > Si-Cu based adsorbents. Proposed multilayered (Freundlich) adsorption mechanism follows ${\pi}$-complexation with pseudo secnd order kinetics.

Toxic Trace and Earth Crustal Elements of Ambient PM2.5 Using CCT-ICP-MS in an Urban Area of Korea

  • Lee, Jin-Hong;Jeong, Jin-Hee;Lim, Joung-Myung
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.3-8
    • /
    • 2013
  • Collision cell technology-inductively coupled plasma-mass spectrometry (CCT-ICP-MS) was used to measure the concentrations of approximately 19 elements associated with airborne PM2.5 samples that were collected from a roadside sampling station in Daejeon, Korea. Standard reference material (SRM 2783, air particulate on filter media) of the National Institute of Standards and Technology was used for the quality assurance of CCT-ICP-MS. The elemental concentrations were compared statistically with the certified (or recommended) values. The patterns of distribution were clearly distinguished between elements with their concentrations ranging over four orders of magnitude. If compared in terms of enrichment factors, it was found that toxic trace elements (e.g., Sb, Se, Cd, As, Zn, Pb, and Cu) of anthropogenic origin are much more enriched in PM2.5 samples of the study site. To the contrary, the results of the correlation analysis showed that PM2.5 concentrations can exhibit more enhanced correlations with the elements (e.g., Fe, K, Si, and Ti) arising from earth's crust. The findings of strong correlations between PM2.5 and the elements of crustal origin may be directly comparable with the dominant role of those species by constituting a major fraction of even PM2.5 as well as PM10 at the roadside area.

Status of the Copper as a Priority Water Pollutant and Management in Korea (특정수질유해물질 구리(Cu)의 수계에서의 현황 및 관리방향)

  • Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.440-447
    • /
    • 2007
  • This paper is dealing with recent hot issues related with copper toxicity and its criteria, which was caused by a new government policy relocating some industries discharging priority-water quality pollutants from the watershed of Han River to other regions. Author is not interested in arguments between two sides of anti- and pro-policy but would like to go over status of copper pollution and its management and regulatory policy in Korea. From the data of published Research Journals and Reports, it can be concluded that copper is very common metal not only in the effluent from publically owned wastewater treatment plants, but also as a non-point source pollutant in the rainfall runoff. In addition, there have been very few studies personal interests, not by National Fund Basis. In order to enforce a new regulation, national-wide macro and micro-mass balance work of heavy metals should be performed in advance. In particular, background concentration and measurement errors have to be clearly defined before a new standard or criteria is established. The new standard has to be acceptable in terms of the best available technology and cost.

Vibration Suppression Design on the Instrument Supporting Structure for the Optical Performance Measurement (대구경 반사경 광학성능 측정을 위한 간섭계 지지구조물의 진동저감 설계)

  • Kim, Hong-Bae;Lim, Jong-Min;Yang, Ho-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.205-208
    • /
    • 2005
  • Fabrication of large scaled mirror for the telescope application is the most challenging technology in recent year. Sophisticate technologies and know-how in fabrication and measurement are required to overcome the technological obstacles. KRISS(Korea Research Institute for Standards and Science) is now developing a large scaled mirror fabrication facility and KARI(Korea Aerospace Research Institute) is supporting the development. High precision interferometric test is required during the grinding and polishing of mirror to identify the surface profile precisely. The required fabrication accuracy of the mirror surface profile is $\lambda$/50 ms($\sim$10 nm for visible wave length). Thus the measurement accuracy should be far less than 10 m. To get this requirement, it is necessary to provide vibration free environment for the interferometer system and mirror under test. Thus the vibration responses on the mirror supporting table due to external vibration should be minimized by using a special isolation system. And the responses on the top of the tower, which hold the interferometer during test, should be minimized simultaneously. In this paper, we propose the concept design of vibration suppression system for the KRISS mirror fabrication facility.

  • PDF

Evaluation of peak-fitting software for magnesium quantification through k0-instrumental neutron activation analysis

  • Dasari, Kishore B.;Cho, Hana;Jacimovic, Radojko;Park, Byung-Gun;Sun, Gwang-Min
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.462-468
    • /
    • 2022
  • The selection and effective utilization of peak-fitting software for conventional gamma-ray spectrum analysis is significant for accurate determination of the mass fraction of elements, particularly in complex peak regions. Majority of the peak-fitting programs can derive similar peak characteristics for singlet peaks, but very few programs can deconvolute multi-peaks in a complex region. The deconvolution of multi-peaks requires special peak-fitting functions, such as left and right-skew distributions. In the this study, 843.76 keV (27Mg) peak area from the complex region (840 keV-850 keV) determined and compared using four different peak-fitting programs, namely, GammaVision, Genie2000, HyperLab, and HyperGam. The 843.76 keV peak interfered with 841.63 keV (152mEu) and 846.81 keV (56Mn). The total Mg concentration was determined through k0-instrumental neutron activation analysis by applying the isotopic interference correction factor 27Al(n,p)27Mg through the simultaneous determination of Al concentration. HyperLab and HyperGam peak-fitting programs reported consistent peak areas, and resultant concentrations agreed with the certified values of matrix-certified reference materials.