• 제목/요약/키워드: Mass loss late

Search Result 27, Processing Time 0.022 seconds

The effect of simulated acid rain on microbial community structure in decomposing leaf litter

  • Cha, Sangsub;Lim, Sung-Min;Amirasheba, Bahitkul;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.36 no.4
    • /
    • pp.223-233
    • /
    • 2013
  • Acid deposition is one of the most serious environmental problems in ecosystems. The present study surveyed the effects of simulated acid rain on leaf litter mass loss and microbial community in the decomposing leaf litter of Sorbus anifolia in a microcosm at $23^{\circ}C$ and 40% humidity. Microbial biomass was measured by substrate-induced respiration (SIR) and phospholipid fatty acids (PLFAs), and the microbial community structures were determined by composition of PLFAs at each interval of decomposition in litter sample and at each pH treatment. The microbial biomass showed peaks at mid-stage of decomposition, decreasing at the late stage. The leaf litter mass loss of S. anifolia decreased with decreasing pH during early and mid-decomposition stages; however the mass loss becomes similar between pH treatments at late-decomposition stage. The acidification remarkably lowers the microbial biomass of bacteria and fungi; however, microbial diversity was unchanged between pH treatments at each stage of litter decomposition. With changes of decomposition stage and pH treatment there were considerable differences in replacement and compensation of microbial species. Fungi/bacteria ratio was considerably changed by pH treatment. The PLFA profile showed significantly larger fungi/bacteria ratio at pH 5 than pH 3 at the early stage of decomposition, and the difference becomes smaller at the later decomposition stage. At low pH, pH 3 and pH 4, the fungi/bacteria ratios were stable according to the litter decomposition stages. Simulated acid rain caused decreases of 10Me17:0, 16:1${\omega}$7c, 18:1${\omega}$7, 15:0, but increase of 24:0. In addition, litter mass loss showed significant positive correlation with microbial biomass measured by SIR and PLFA on the decomposing leaf litter.

High Resolution Spectroscopy of Raman Features in Symbiotic Stars and Young Planetary Nebulae Using the BOES

  • Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.59.4-60
    • /
    • 2016
  • One important aspect of the late stage stellar evolution is the mass loss processes, where a significant amount of stellar material will be returned to the interstellar space to be used for stars of the next generation. Raman scattered O VI and He II by atomic hydrogen in symbiotic stars and young planetary nebulae are found to be excellent tools to investigate the mass loss processes and estimate the mass loss rate. These features appear near hydrogen Balmer emission lines due to the huge cross section in the vicinity of Lyman resonance transitions. With the capability of high spectral resolution and broad spectral coverage, BOES is an ideal instrument to perform Raman spectroscopy of these objects. In this talk, a cursory overview of our research activities on Raman spectroscopy of symbiotics and PNe using the BOES is presented.

  • PDF

Monitoring Observations of Active White Dwarf Binary Systems

  • Lee, Hee-Won;Choi, Bo-Eun;Im, Myungshin;Lim, Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.60.3-60.3
    • /
    • 2019
  • Binary systems of a white dwarf showing mass transfer activities are classified into cataclysmic variables and symbiotic stars. In the case of cataclysmic variables, the companion is usually a late type main sequence star filling its Roche lobe, where material is transferred through the inner Lagrangian point to form an accretion disk around the white dwarf. The disk becomes unstable and highly viscous when the surface density exceeds the critical density, leading to dwarf nova outbursts. In contrast, symbiotic stars are wide binary systems having a giant as the mass donor. Some fraction of giant stellar wind is accreted to the white dwarf giving rise to various symbiotic activities. In particular, half of symbiotics show Raman O VI at 6830 and 7088, which are important spectroscopic probe of mass transfer process. Monitoring observations using 1 m class telescopes will produce valuable information regarding the mass loss and mass transfer to white dwarf stars, shedding much light on the last stage of stellar evolution of low and intermediate mass stars.

  • PDF

DUST PRODUCTION BY EVOLVED STARS IN THE MAGELLANIC CLOUDS

  • KEMPER, F.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.283-287
    • /
    • 2015
  • Within the context of the hugely successful SAGE-LMC and SAGE-SMC surveys, Spitzer photometry observations of the Large and Small Magellanic Clouds have revealed millions of infrared point sources in each galaxy. The brightest infrared sources are generally dust producing and mass-losing evolved stars, and several tens of thousands of such stars have been classified. After photometrically classifying these objects, the dust production by several kinds of evolved stars - such as Asymptotic Giant Branch stars and Red Supergiants - can be determined. SAGE-Spec is the spectroscopic follow-up to the SAGE-LMC survey, and it has obtained Spitzer-IRS $5-40{\mu}m$ spectroscopy of about 200 sources in the LMC. Combined with archival data from other programs, observations at a total of ~1000 pointings have been obtained in the LMC, while ~250 IRS pointings were observed in the SMC. Of these, a few hundred pointings represent dust producing and mass-losing evolved stars, covering a range in colors, luminosities, and thus mass-loss rates. Red Supergiants and O-rich and C-rich AGB stars - the main dust producers - are well represented in the spectroscopic sample. This paper will summarize what we know about the mineralogy of dust producing evolved stars, and discuss their relative importance in the total dust budget.

A Perspective on the Sustainability of Soil Landscape Based on the Comparison between the Pre-Anthropocene Soil Production and Late 20th Century Soil Loss Rates (인류세 이전 토양생성률과 20세기 후반 토양유실률 비교를 통한 토양경관 지속가능성 전망)

  • Byun, Jongmin;Seong, Yeong Bae
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.2
    • /
    • pp.165-183
    • /
    • 2015
  • It is well known that, since the 15th century, the amount of soil loss in our country due to change in land use by human has increased more rapidly than ever before. However we cannot answer the question 'How long can the soil persist under the current rates of soil loss?', because it was difficult to quantify the soil production rate. With the advancement of accelerated mass spectrometry, the attempt to quantify rate of soil production and derive soil production function succeeded, and recently it was also applied into the Daegwanryeong Plateau. Here we introduce the principles for quantifying soil production and deriving soil production function using terrestrial cosmogenic nuclides, and then compare the soil production rates from the plateau with soil loss data after the late 20th century, and finally estimate how long the soil can persist. Averaged soil production rate since the Holocene derived from the plateau is revealed as ${\sim}0.05[mm\;yr^{-1}]$, and, however, the recent soil loss rate of intensively used farmlands at the same region is up to sixty times greater than the soil production rate. Thus, if current land use system is maintained, top soils on the cultivated lands over hillslopes especially in upland areas are expected to disappear within several decades at the earliest.

  • PDF

The effects of the scattering opacity and the color temperature on numerically modelling of the first peak of type IIb supernovae

  • Park, Seong Hyun;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2020
  • A type IIb supernova (SN IIb) is the result of core-collapse of a massive star which lost most of its hydrogen-rich envelope during its evolution. The pre-SN progenitor properties, such as the total radius and the mass of the hydrogen-rich envelope, can widely vary due to the mass-loss history of the progenitors. Optical light curves of SNe IIb are dominated by energy released by the hydrogen recombination and the radioactive decay of 56Ni in the early and late epochs respectively. This may result in distinctive double peaked light curves like the one observed in SN 1993J. The first peak, caused by the hydrogen recombination, can be modelled with numerical simulations providing information on the pre-SN progenitor properties. We compare two radiation-hydrodynamics codes, STELLA and SNEC, that are frequently used in SNe modelling, and investigate the effect of opacity treatment on the temporal evolution of the color temperature of SNe and eventually on the optical light curves. We find that with a proper treatment of the scattering opacity, SNe IIb models exploded from the progenitor models evolved with latest stellar evolution model hardly match the observational data. We also discuss the smaller scale features found in the models during hydrogen recombination phase.

  • PDF

Transverse Wind Velocity Recorded in Spiral-Shell Pattern

  • Hyosun Kim
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.149-157
    • /
    • 2023
  • The propagation speed of a circumstellar pattern revealed in the plane of the sky is often assumed to represent the expansion speed of the wind matter ejected from a post-main-sequence star at the center. We point out that the often-adopted isotropic wind assumption and the binary hypothesis as the underlying origin for the circumstellar pattern in the shape of multilayered shells are, however, mutually incompatible. We revisit the hydrodynamic models for spiral-shell patterns induced by the orbital motion of a hypothesized binary, of which one star is losing mass at a high rate. The distributions of transverse wind velocities as a function of position angle in the plane of the sky are explored along viewing directions. The variation of the transverse wind velocity is as large as half the average wind velocity over the entire three dimensional domain in the simulated models investigated in this work. The directional dependence of the wind velocity is indicative of the overall morphology of the circumstellar material, implying that kinematic information is an important ingredient in modeling the snapshot monitoring (often in the optical and near-infrared) or the spectral imaging observations for molecular line emissions.

만기형 변광성들에 대한 SiO 메이저선 관측

  • Kim, Bong-Gyu;No, Deok-Gyu
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.155-166
    • /
    • 1992
  • We observed a total of 14 Mira variables as well as 4 late type variable stars for their SiO ${\nu}= 1$, J = 2 - 1 maser lines from April 1989 to November 1990 with the 13.7 m radio telescope at Daeduk Radio Astronomy Observatory. The maser intensity variations were the prime objective of the observations which well covered the periods of the variations. The origion of the variations were studied by comparing wi th those previousely measured in optical and infrared(IR) wavelengths and we confirmed that the intensity variations were in good correlation with those in V magnitude and IR intensity as previousely found in former investigators in general. However, for a few sources, we could find the missing maxima. The intensities themselves also were in good correlation with SiO ${\nu}\;=\;1$, J = 1 - 0 maser intensities observed in Yebes as expected. The good correlations indicate that the pumping source of the SiO maser is likely to be the IR emission in the masing regions and the "missing maxima" that are apparent in two particular sources are considered to relate wi th the strength of shocks arising from the eruptive mass-loss from central stars.

  • PDF

Combustion Characteristics Analysis of a Non-class 1E Cable for Nuclear Power Plants according to Aging Period (경년열화 기간에 따른 원자력발전소용 비안전등급 케이블의 연소특성 분석)

  • Kim, Min Ho;Lee, Seok Hui;Lee, Min Chul;Lee, Sang Kyu;Lee, Ju Eun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.22-29
    • /
    • 2020
  • In this study, combustion and smoke release characteristics of a non-class 1E cable for nuclear power plants were investigated according to aging period. The aging was reproduced through an accelerated aging method for interval of 10 years :10, 20, 30 and 40 year, which was applied the Arrhenius equation. The cable was subjected to accelerated aging. In order to understand combustion and smoke release characteristics, the cone calorimeter test was performed according to the standard code of KS F ISO 5660-1. Heat release rate, mass loss rate, average rate of heat emission and smoke production rate were examined through cone calorimeter test. Fire performance index, fire growth index and smoke factor were derived from test results for the comparison of quantitative fire risk. When comparing the fire performance index and the fire growth index, the early fire risk tends to decrease as aging progresses, which might be attributed from the fact that the volatile substances of cables were evaporated. However, when comparing the heat release rate, average rate of heat emission and mass loss rate, which represent the mid and late periods of the fire risk, the values of accelerated aging cables were much higher than those of non-aged cable, which signifies the unstable formation of the char layer resulted in the change in the performance of flame retardants. In addition, the results from the smoke characteristics show that the accelerated aging cables were lager than the non-aged cables in terms of overall fire risk. These results can be used as baseline data when assessing fire risk of cables and establishing fire safety code for nuclear power plants.

Effect of Complete Fasting on Energy Metabolites and Serum Parathyroid Hormone and Mineral Excretion in Women (여성에서 절식이 에너지 대사산물 및 혈청 PTH 수준과 무기질 배설에 미치는 영향)

  • 박현서;이은옥
    • Journal of Nutrition and Health
    • /
    • v.34 no.5
    • /
    • pp.547-553
    • /
    • 2001
  • This study was designed to observe the change of body composition and nutrient metabolites and the excretion of minerals during complete fasting for 10 days in thirty women. Average loss of body weight was 7.98kg and body fat was gradually reduced after 9 days fasting, but the loss of lean body mass was reduced after 7 days fasting. Serum glucose level was sustained at constant level, but serum levels of blood urea nitrogen, free acid and $\beta$-hydroxybutyrate were significantly increased during fasting but decreased after re-feeding. Urinary excretions of 3-methylhistidine, total creatinine, and urea were high in the beginning of fasting but gradually decreased. Serum level of parathyroid hormone was significantly reduced by fasting but regained after re-feeding. Serum level of minerals was at the constant level throughout the experimental period. The urinary excretion of minerals(Ca, K, Mg, P) was significantly increased in the early stage of fasting and then reduced from 7 days, but the excretion of Zn was continuously increased until the late stage of fasting. These results showed that amino acid fatty acid released from the breakdown of muscle protein and body fat, respectively, were utilized for energy during fasting. Body weight and BMI were reduced because of the increased muscle protein breakdown and body water excretion during early stage of fasting, but the significant body fat loss was after 9 days fasting. Therefore, it could be suggested to fast for longer than 10 days if the reduction of body fat was planned by fasting, and recommed to exercise and ingest more vitamins and minerals to replace the excreted minerals during fasting. (Korean J Nutrition 34(5) : 547~553, 2001)

  • PDF