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Abstract
Acid deposition is one of the most serious environmental problems in ecosystems. The present study surveyed the effects 

of simulated acid rain on leaf litter mass loss and microbial community in the decomposing leaf litter of Sorbus anifolia 

in a microcosm at 23°C and 40% humidity. Microbial biomass was measured by substrate-induced respiration (SIR) and 

phospholipid fatty acids (PLFAs), and the microbial community structures were determined by composition of PLFAs at 

each interval of decomposition in litter sample and at each pH treatment. The microbial biomass showed peaks at mid-

stage of decomposition, decreasing at the late stage. The leaf litter mass loss of S. anifolia decreased with decreasing pH 

during early and mid- decomposition stages; however the mass loss becomes similar between pH treatments at late-de-

composition stage. The acidification remarkably lowers the microbial biomass of bacteria and fungi; however, microbial 

diversity was unchanged between pH treatments at each stage of litter decomposition. With changes of decomposition 

stage and pH treatment there were considerable differences in replacement and compensation of microbial species. Fun-

gi/bacteria ratio was considerably changed by pH treatment. The PLFA profile showed significantly larger fungi/bacteria 

ratio at pH 5 than pH 3 at the early stage of decomposition, and the difference becomes smaller at the later decomposi-

tion stage. At low pH, pH 3 and pH 4, the fungi/bacteria ratios were stable according to the litter decomposition stages. 

Simulated acid rain caused decreases of 10Me17:0, 16:1ω7c, 18:1ω7, 15:0, but increase of 24:0. In addition, litter mass loss 

showed significant positive correlation with microbial biomass measured by SIR and PLFA on the decomposing leaf litter. 
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INTRODUCTION

Acidification of precipitation caused by human ac-

tivities has become one of the most serious problems in 

natural ecosystems (Berg and Laskowski 2006). Acid rain 

influences on terrestrial plants performances include 

cation-loss or nutrient-loss from leaves (Proctor 1983, 

Liu et al. 2007), change in the gas-exchange rate through 

stomata on leaves (Evans et al. 1982, Hermle et al. 2007), 

germination (Lee and Weber 1979, Raynal et al. 1982), 

and plant growth (Wood and Bormann 1974, Neufold et 

al. 1985, Reich et al. 1987). In addition, acid rain is known 

to change the soil chemical status and function of the 

decomposer community, often leading to imbalances in 

nutrient cycling, litter decomposition, and productivity of 

the ecosystem (Pennanen et al. 1998). It resulted in poor 

soil fertility, and the harmful effects on plant growth by 

leaching of toxic soluble Al (Wood et al. 1984, Matzner et 

al. 1986, Osonubi et al. 1988), and releases such as Ca, Mg, 

and K from the solid phases of soil into soil solution (Batty 
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determination of weight loss and microbial biomass, mi-

crobial community structure, and microbial activities on 

the decomposing litter. Microbial biomass and microbial 

community structures on the leaf litter were determined 

by SIR and PLFA methods. 

MATERIALS AND METHODS

Microcosm Design and Litter Decomposition 

Sorbus alnifolia is known to have a wide tolerance 

range to atmospheric pollution and has a trend of increas-

ing distributional area near big cities in Korea (You et al. 

1998). We collected freshly fallen leaf litter of S. alnifolia at 

autumn, dried at 60°C dry oven, and cut to 2 cm width for 

easy use in the microcosm.

The study used 1 L colorless glass bottles with detach-

able lids which have 9 mm diameter holes filled with 300 g 

of clean quartz sand. The quartz sand contained 90% wa-

ter holding capacity by adding deionized water to main-

tain constant moisture in the microcosm bottles. Ap-

proximately 4 g of litter samples were soaked in distilled 

water for 1 h, and then placed on top of the sand in the 

microcosm glass bottle, and incubated at constant 23°C 

and 40% relative humidity. 

The simulated acid rain of pH 3, pH 4, and pH 5 were 

made by dilution of sulfuric acid in deionized water. After 

16 days of 10 ml fresh soil suspension solution addition, 

10 ml of simulated acid rain of each pH level applied to 

each experimental treatment group, and additional ar-

tificial acid rain water supplied at twice a week as much 

as the same amount of evaporated water from the micro-

cosm until the end of experiment. The four replicated lit-

ter samples were carefully retrieved from microcosm af-

ter 80 and 160, and 290 experimental days. Retrieval fresh 

litter samples from microcosm use to measure the mass 

loss measurement and microbial biomass and microbial 

community analysis. 

Microbial Biomass

Fungal, bacterial and total microbial biomass C (Cmic) 

were determined by the SIR technique of Anderson and 

Domsch (1978) with modifications by Beare et al. (1990). 

Four subsamples (0.5-1.0 g dry weight equivalent) of each 

litter sample were weighed into 100 ml serum bottles and 

incubated at 4°C for 12 h with 2.5 ml microbial respiration 

inhibitor per gram of litter sample. Cycloheximide (16.0 

g/l) and streptomycin (3.2 g/l) for fungal and bacterial 

and Younger 2007, Zhang et al. 2007). 

In terrestrial ecosystems, the litter decomposition car-

ried out by microorganisms is one of the most important 

processes in decomposer subsystem. In particular, strong 

reductions in microbial activity are easily detected when 

low pH acid rain is applied (Bååth et al. 1979, Bewley and 

Parkinson 1985, Fritze 1992, Myrold and Nalson 1992, 

Rousk et al. 2009). The essential nutrient (K and Mg) re-

leased from plant litter were found to be affected by low 

pH (Holvland et al. 1980, Batty and Younger 2007, Berg 

and Laskowski 2006), while decomposition of plant lit-

ter showed no significant effect of the acid rain. In addi-

tion, Ouyang et al. (2008) suggested the mineralization of 

soil organic C was not related to pH level. On the other 

hand, Berg and Laskowski (2006) demonstrated that such 

changes in litter, leaving larger recalcitrant remains, may 

lead to changed decomposition patterns, which should 

decrease the extent of organic matter decomposition in 

ecosystems and cause a higher humus accumulation rate.
Most studies on the effect of acid rain noted that the 

species of acid-tolerant fungi and bacteria have shown in-

creased activity in plant litter decomposition in terrestrial 

environments (Gross and Robbins 2000, Reith et al. 2002), 

and the effects of the pH gradient on microbial commu-

nity structure and the patterns were demonstrated (Fro-

stegård et al. 1993, Bååth and Arnebrant 1994, Bååth et 

al. 1992, 1995, Pennanen et al. 1998, Bååth and Anderson 

2003, Stemmer et al. 2007, Högberg et al. 2007, Rousk et 

al. 2009). 

Several techniques have been used to identify fungal 

and bacterial groups in soil. One of the most commonly 

used methods is the selective inhibition technique (An-

derson and Domsch 1973) based on inhibition of the 

substrate-induced respiration (SIR) using antibiotics that 

inhibit bacterial and fungal respiration (Bååth and Ander-

son 2003), thymidine incorporation technique (Bååth and 

Arnebrant 1994), and by analysis the ester-linked phos-

pholipid fatty acids (PLFAs) composition of the soil, since 

different subsets of the community have different PLFA 

patterns (Bååth et al. 1995). Frostegård and Bååth (1996) 

suggested that a fungal/bacterial biomass ratio could be 

estimated by using the PLFA 18:2v6,9 as a measure of fun-

gal biomass and the sum of 13 bacteria specific PLFAs as a 

measure of bacterial biomass (Bååth and Anderson 2003, 

Frostegård et al. 1993).

The aim of the present study was to assess the effect 

of simulated acid rain on plant litter decomposition pro-

cesses in a microcosm environment. The leaf litter sam-

ples were treated periodically with simulated acid rain, 

which was made using sulfuric acid, and retrieved for the 
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gas chromatography mass spectrometry; Hewlett Pack-

ard HP6890 Gas Chromatograph (Hewlett Packard, Palo 

Alto, CA, USA) equipped with a DB-5MS column (0.2 mm 

[inner diameter] by 25 m; 0.25 μm film thickness). A split-

less injection was employed (injector at 300°C), and the 

oven was maintained at 60°C for 1 min after injection. The 

oven temperature was then increased to 150°C at 30°C/

min and maintained for 4 min, followed by an increase 

to 250°C at 4°C/min and held for 15 min. Finally, the oven 

temperature was increased to 300°C at 25°C/min and held 

for 6 min. The transfer line was held at 280°C throughout. 

Helium was used as the carrier gas (0.8 ml/min). FAMEs 

were identified by retention time and/or electron ioniza-

tion mass spectrometry, HP6890 Mass Selective Detector 

(Hewlet Packard).

Bacterial biomass was estimated from the summed 

concentrations of the following PLFAs: i15:0, a15:0, 15:0, 

i16:0, 16:1ω9, 16:1ω7t, i17:0, a17:0, 17:0, cy17:0, 18:1ω7 

and cy19:0 (Frostegård and Bååth 1996, Pennanen et 

al. 1998, 1999, Bååth and Anderson 2003). Fungal bio-

mass was estimated from concentrations of the marker 

18:2ω6,9 (Federle 1986, Frostegård and Bååth 1996, Pen-

nanen et al. 1998, 1999, Bååth and Anderson 2003).

Microbial Diversity

 The Shannon–Wiener index (Shannon 1948), Simp-

son’s diversity (Simpson 1949) and Evenness were gen-

erally defined as follows: where H was Shannon–Wiener 

index, J was Evenness, Ds was Simpson Diversity, s was 

the total number of FAMEs in each sample and pi was the 

percentage of the peak area of FAMEi to the total area of 

each sample. 
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Statistical Analysis

Differences between samples, in regard to litter mass 

loss, and microbial biomass were analyzed statistically 

using a one-way ANOVA followed by a Turkey’s Honestly 

Significant Difference (HSD) test. For each value, linear 

correlations of coefficients were provided. All statistical 

work was performed with SPSS ver. 17.0 (SPSS Inc., Chi-

cago, IL, USA).

respiratory inhibitors were used, respectively. Deionized 

water was added instead of microbial inhibitors for con-

trol treatment. All treatments had 2.5 ml/g glucose solu-

tions (16.0 g/l) added as a substrate and were immediate-

ly flushed with CO2-free gas, sealed tightly, and incubated 

at 23°C for 2 h. The CO2 concentrations in the bottles were 

measured by infrared gas analyzer (IRGA) after incuba-

tion.

Microbial biomass-C was calculated according to the 

equation of Beare et al. (1990) as follows: 

Fungal biomass (μg C/g 
dry weight) =  

                  231.5+ 17.3 (μg CO2-Cfungal g-1 dry weight h-1) 

Bacterial biomass (μg C/g 
dry weight) =  

                  188.3+15.5 (μg CO2-Cbacterial g-1 dry weight h-1) 

Total microbial biomass-C (μg C/g 
dry weight) = 

                                 -765.1 + 14.3 (μg CO2-Ctotal g-1 dry weight h-1) 

Microbial Community Structure  

PLFAs were extracted and analyzed according to the 

procedure described by Wilkinson et al. (2002). Fresh lit-

ter samples were freeze-dried and ground to less than 

10 μm by blender. 250 ± 1 mg of freeze-dried litter sample 

was extracted by addition of 1.6 ml of potassium phos-

phate (50 mmol/l, pH 7.4), methanol (4 ml) and chloro-

form (2 ml) in 25 ml glass tubes. The tubes were vortexed 

for 30 s and sonicated for 2 min prior to incubation in a 

water bath at 37°C for 30 min. The tubes were shaken for 

2 h horizontally, and then the supernatant liquid trans-

ferred to a 50 ml separatory funnel, and chloroform (4 ml) 

and water (4 ml) were added to the separating funnel. The 

chloroform phase was collected, reduced in volume by 

rotary evaporation, and fractionated by chromatography 

on silicic acid (mesh size 200–400). Neutral lipids and gly-

colipids were eluted with chloroform (3 ml × 2) and ac-

etone (3 ml × 2), respectively. Polar lipids were eluted with 

3 ml × 2 methanol and collected in glass test tubes. The 

solvent was evaporated under a stream of oxygen-free 

N2, and the residue subjected to alkaline methanolysis 

by vortexing for 30 s in a mixture of 2 ml of 0.2 M metha-

nolic KOH and toluene:methanol (1:1, v/v) solution, and 

followed by incubation at 37°C for 30 min. After cooling, 

the mixtures were neutralized with 1 mol acetic acid and 

fatty acid methyl esters (FAMEs) extracted twice by 2 ml 

of chloroform:hexane (1:4, v/v). After evaporation of the 

solvent under oxygen-free N2, the FAMEs were re-sus-

pended in chloroform:hexane (1:4, v/v) containing 15 μg 

nonadecanoic acid methyl ester (Sigma Chemical, Poole, 

UK) as an internal standard. FAMEs were quantified by 
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decreased or plateaued after the early stage of decompo-

sition in low pH treatments.

Consequently, in the early decomposition period, the 

fungal biomass was the same as the bacterial biomass, es-

pecially at low pH; however, the fungal biomass dominat-

ed on the decomposing litter at the mid-decompositional 

stage. Although bacterial and fungal biomass decreased 

with decreasing acidity, the simulated acid rain affected 

bacterial biomass more than it did fungal biomass. In oth-

er words, fungal biomass was more stable in acidic condi-

tions than bacterial biomass.

Microbial Community Structure on the Decaying 
Leaf Litter

Microbial PLFA profiles of decomposing S. alnifolia leaf 

litter that were treated with different pH of artificial acid 

rain are shown in Table 1. Changes of the fungal, bacte-

rial, and total microbial PLFAs on the decomposing litter 

samples are presented in Fig. 3. The changes in PLFAs of 

fungi showed similar patterns to the change of microbial 

biomass determined by SIR technique. The bacterial and 

fungal PLFAs concentration decreased remarkably with 

increasing acidity of artificial rain, and showed peak con-

centration at the mid-stage of litter decomposition at all 

microbial groups. The concentration of bacterial PLFAs 

was 1.4 to 2.9 times greater than that of fungal PLFAs. 

Each PLFA marker showed a different pattern of re-

sponses at different pH treatments and decomposition 

stages. PLFAs of gram positives almost linearly increased 

with increasing pH; however, the PLFAs of gram negatives 

also showed increasing patterns at the early and mid-

stages of decomposition then rapidly decreased at the late 

stage (Fig. 4).

As the process of S. alnifolia litter decomposition, the 

PLFAs, such as i17:0, 16:1ω7c, 16:1ω7t, 10Me18:0, and 

20:4, markedly increased at mid and late-stages in the 

early stage, and the i15:0, i16:0, a17:0, and 15:0 showed in-

creases. However, the PLFA of 16:1ω5 and 24:0 decreased 

as decomposition proceeded. Most PLFA markers showed 

peaks at mid-stage of decomposition, and then decreased 

at the late-stage decomposition. In late stage of litter de-

composition, the 10Me17:0, 16:1ω7c, 18:1ω7, 15:0 PLFAs 

increased with increasing pH value, while 24:0 showed 

the opposite pattern.

Microbial Diversity

The number of PLFAs on the decomposing leaf litter 

samples was increased with decomposition processed 

RESULTS

Litter Mass Loss

The litter decomposition was the slowest at pH 3 treat-

ment, and the most rapid at pH 5 treatment in the early 

and mid-stage of decomposition (Fig. 1). In the early stage 

of litter decomposition, mass loss at pH 5 was 38.5%, and 

26.7% at pH 3. The decomposition rate between pH 3 and 

pH 5 showed significant difference (P = 0.001); however, 

there is no significant difference in the late stage between 

each pH treatment.

Microbial Biomass Determined by SIR

The microbial biomass, determined by SIR method, of 

decomposing litter samples treated with different acid-

ity of artificial rain are presented in Fig. 2. The microbial 

biomass decreased with increasing acidity, showing the 

smallest at pH 3 and the largest at pH 5 treatment. The 

microbial biomass increased with decomposition pro-

ceeds and showed peaks at mid-stage decomposition and 

decreased at the late stage.

After 160 days decomposition, the mid-stage of de-

composition, total microbial biomass-C was measured 

as 12.97 mg Cmic/g litter at pH 3, 17.39 mg Cmic/g litter at 

pH 4, and 23.25 mg Cmic/g litter at pH 5. Bacterial biomass 

increased from 4.95 mg Cmic/g litter to 8.94 mg Cmic/g lit-

ter from pH 3 to pH 5 at 80 days, and 4.88 mg Cmic/g litter 

to 11.57 mg Cmic/g litter at pH 3 to pH 5 at 160 days after 

treatment. Fungal biomass increased from 5.69 to 6.92 mg 

Cmic/g litter from pH 3 to pH 5 at 80 days, and then, after 

80 days from 8.38 to 11.85 mg Cmic/g litter from pH 3 to 

pH 5. Unlike fungal biomass, bacterial biomass sharply 

increased at the initial decomposition stage, and slowly 

Fig. 1. Changes in mass loss of Sorbus alnifolia leaf litter at 23°C and 
constant humidity microcosm in the different pH of simulated acid rain 
treatments. Vertical lines indicate standard deviation (n = 4).
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DISCUSSION

Litter decomposition mainly performed by soil micro-

bial activities plays very important roles such as nutrient 

cycling in the natural ecosystems. In addition, many pro-

cesses of litter decomposition were influenced by physi-

cochemical environments and chemical contents of leaf 

litter (Heal et al. 1997, Zimmer 2002, Sariyildiz and Ander-

son 2003). 

The result of this study showed a remarkable decrease 

of leaf litter mass loss especially at early and mid-stages 

of decomposition with artificial acid rain treatment, con-

(Table 2). Fourteen kinds of PLFAs were presenting the 

initial decomposition litter sample just before the artifi-

cial rain treatment. The number of PLFAs was increased 

to 22 after 80 days, 27 after 160 days, and 26-27 after 290 

days. However, the diversity indices and evenness indices 

at different pH treatment and between litter decomposi-

tion stages showed no significant differences although 

Simpson diversity indices slightly increased with decom-

position time elapsed. These results suggested that there 

were large amounts of displacement of microbial taxa ac-

cording to pH treatment and proceeds of litter decompo-

sition.  
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Table 1. PLFA profiles of the decomposing S. alnifolia litter samples treated with simulated acid rain in the microcosm. Values are means of total PLFA 
concentrations (nmol/g), standard deviation in parentheses, and n.m is not measurable

PLFA concentration (nmol/g)

Initial After 80 days After 160 days After 290 days

pH3 pH4 pH5 pH3 pH4 pH5 pH3 pH4 pH5

Gram +
i15:0 31.1

(4.9)
22.4

(11.1)
13.9

(11.7)
37.9

(4.88)
94.3

(35.5)
107.9
(14)

96.5
(18.7)

131.3
(6.29)

154.4
(7.71)

84.2
(6.2)

a15:0 n.m 26.0
(11.8)

26.8
(14.7)

23.1
(9.6)

34.1
(20.7)

40.5
(11.5)

58.0
(12.4)

41.7
(11.1)

61.8
(27.9)

41.5
(28.9)

i16:0 n.m 15.1
(9.5)

9.4
(10.0)

16.2
(19.1)

38.1
(14.2)

30.2
(5.6)

39.7
(6.5)

49.2
(20.1)

65.8
(25)

53.6
(12)

10Me16:0 n.m 30.7
(19.4)

28.3
(32.5)

13.0
(9.0)

16.8
(8.5)

19.5
(2.9)

17.9
(3.6)

53.4
(8.1)

71.1
(27)

60.5
(13.5)

i17:0 n.m n.m n.m n.m 15.0
(5.9)

14.9
(1.7)

14.5
(1.4)

22.0
(9.6)

25.7
(7.2)

25.1
(5.6)

a17:0 n.m 15.0
(8.9)

18.0
(13.4)

14.9
(3.9)

12.5
(3.8)

12.7
(4.3)

16.8
(1.9)

42.1
(12.1)

51.7
(11.3)

42.3
(9.4)

10Me17:0 n.m 12.5
(8.6)

12.0
(16.8)

7.4
(3.6)

9.8
(1.3)

10.3
(0.8)

23.4
(11.3)

8.7
(1.8)

12.6
(4.6)

15.8
(3.5)

Subtotal 31.1 121.7 108.4 112.5 220.6 235.9 266.8 348.5 443.2 322.9

Gram -
16:1ω7c n.m n.m n.m n.m 173.9

(46.2)
218.6
(26.9)

269.6
(34.9)

124.0
(24.2)

149.7
(38.3)

169.3
(43.4)

cy17:0 20.3
(23.6)

36.1
(6.8)

19.6
(23.4)

18.5
(9.1)

25.5
(6.3)

31.9
(2.0)

43.4
(12.0)

25.1
(7.2)

30.8
(7.3)

26.2
(11.4)

18:1ω7 91.0
(42.8)

383.1
(126.7)

329.1
(266.6)

295.5
(216.7)

489.5
(57.7)

687.4
(103.6)

745.8
(90.0)

312.9
(42.1)

371.2
(68.0)

411.2
(129.5)

cy19:0 12.9
(12.6)

33.9
(19.7)

25.5
(20.6)

40.9
(47.7)

95.2
(26.5)

90.0
(7.6)

94.7
(19.9)

66.8
(20.9)

74.5
(5.4)

48.7
(22.4)

Subtotal 124.2 453.1 374.2 354.9 784.1 1,027.90 1,153.50 528.8 626.2 655.4

Other bacteria
15:0 n.m 19.0

(11.6)
10.8
(9.8)

9.7
(3.4)

11.5
(5.9)

6.3
(1.9)

6.4
(2.0)

29.2
(10.6)

33.7
(14.5)

46.9
(10.5)

16:1ω7t n.m n.m n.m n.m 42.0
(11.4)

54.8
(17.7)

55.0
(10.2)

85.2
(29.4)

106.0
(38.1)

74.8
(53.1)

17:0 25.8
(20)

30.7
(17.8)

26.2
(11.8)

25.2
(19.7)

46.8
(8.4)

45.0
(7.6)

59.9
(5.7)

34.0
(7.8)

31.2
(5.7)

56.6
(12.6)

18:1ω9 165.1
(229.2)

239.7
(134.8)

207.8
(248.2)

224.5
(171.8)

380.1
(87.4) 

390.4
(67.0)

487.6
(42.0)

304.2
(57.7)

200.9
(37.8)

240.7
(162.0)

Subtotal 190.9 289.4 244.8 259.4 480.4 496.5 608.9 452.6 371.8 419.0

PLFAbacteria 346.2 864.3 727.3 803.6 1,485.0 1,760.4 2,029.3 1,329.9 1,441.1 1,397.3

Arbuscular 
   mycorrhza 

16:1ω5 37.8
(51.9)

148.3
(78)

170.8
(147.4)

77.6
(73.1)

30.2
(4.8)

33.7
(9.2)

51.4
(7.2)

25.1
(8.6)

16.3
(3.9)

46.2
(10.3)

Actinomycete 
   genera 

10Me18:0 n.m n.m n.m n.m 8.7
(1.9)

6.2
(2.1)

11.3
(1.7)

11.3
(2.9)

10.1
(4.6)

26.0
(5.8)

Fungal PLFA
18:2ω6,9 242.1

(316.6)
564.1

(264.4)
425.3

(498.3)
568.9

(326.4)
852.1

(161.7)
1,014.6
(69.3)

1,373.4
(118.9)

659.7
(204.8)

490.8
(91.6)

566.1
(396.3)

PLFAfungal 242.1 564.1 425.3 568.9 852.1 1,014.6 1,373.4 659.7 490.8 566.1
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physico-chemical environmental changes; in addition, 

there are many methods for identifying soil microbial 

taxonomic groups and community structures. SIR and 

PLFAs were comparatively simple methods of quantifying 

microbial groups. Bååth and Anderson (2003) found good 

linear correlation between the total microbial biomass es-

timated with SIR and total amount of PLFAs, indicating 

that 1 mg biomass-C was equivalent to 130 nmol of total 

amount of PLFAs. The present results also showed that the 

firming the results of Rechcigl and Sparks (1985), and 

Wolters (1991a, 1991b). These decreased litter mass losses 

suggested that acidification inhibits the growth or activi-

ties of micro-decomposers, Berg and Laskowski (2006) 

reported that acidification may affect the decomposition 

process directly through the effect of H+ ions on some de-

composers and deterioration of soil conditions for others.

The microbial community structure on the decom-

posing litters is very complicated and highly sensitive to 

Table 1. Continued

Initial

PLFA concentration (nmol/g)

After 80 days After 160 days After 290 days

pH3 pH4 pH5 pH3 pH4 pH5 pH3 pH4 pH5

Other PLFA
i14:0 n.m 11.5

(7.7)
12.3
(9.9)

9.5
(4.5)

10.1
(6.0)

13.0
(3.3)

13.1
(4.8)

12.0
(17.8)

12.9
(5.8)

12.4
(2.8)

14:0 n.m 34.6
(23)

29.4
(24.6)

25.3
(15.2)

39.4
(15.2)

48.6
(4.2)

49.3
(14.1)

12.0
(1.8)

12.9
(5.8)

12.4
(2.8)

16:0 1,126.6
(947.1)

975.5
(530.2)

726.1
(830.9)

792.5
(547.8)

1,255.4
(182.4)

1,363.6
(185.1)

1,660.7
(121.5)

950.8
(293.9)

928.9
(111.2)

983.0
(695.0)

18:0 715.2
(291.8)

201.4
(111.4)

130.0
(150.4)

200.6
(118.1)

312.9
(42.7)

314.8
(38)

398.5
(30.4)

231.6
(46.7)

211.4
(15.4)

200.0
(126.0)

20:4 n.m n.m n.m n.m 24.2
(21.5)

9.5
(3.6)

9.3
(1.6)

17.9
(2.2)

12.2
(2.0)

11.0
(2.5)

20:0 23.3
(22.0)

58.7
(33.9)

22.5
(17.3)

20.8
(10.4)

30.8
(4.4)

30.2
(1.5)

48.3
(7.7)

21.8
(4.6)

21.3
(2.2)

33.0
(7.4)

21:0 11.6
(14.9)

22.7
(15.3)

27.6
(19.6)

24.3
(9.2)

31.8
(5.4)

30.4
(3.2)

50.2
(10.3)

27.0
(2.6)

24.6
(8.0)

32.1
(14.2)

23:0 5.4
(1.3)

18.0
(10.0)

9.6
(2.3)

6.5
(0.7)

6.2
(1.4)

4.8
(0.8)

8.4
(1.3)

3.0
(0.2)

5.0
(0.4)

8.2
(1.8)

24:0 8.8
(2.1)

16.6
(7.7)

18.0
(9.5)

16.1
(3.6)

12.4
(3.5)

10.5
(1.7)

16.3
(3.6)

8.5
(0.6)

n.m n.m

Subtotal 1,890.9 1,339.0 975.5 1,095.6 1,723.2 1,825.4 2,254.1 1,284.6 1,229.2 1,292.1

PLFAtotal 2,464.9 2,732.8 2,100.3 2,453.5 4,041.7 4,585.1 5,632.1 3,285.0 3,188.2 3,289.4

Other bacteria, bacteria other than the Gram+ and Gram-; Other PLFA, PLFA other than the bacterial and fungal PLFA.

Table 2. Shannon–Wiener index, Simpson’s Diversity and Evenness (J) of PLFAs in microbial community on the decomposing S. alnifolia leaf litters. Values 
are means of four replicates, standard deviation are in parentheses

Initial
After 80 days After 160 days After 290 days

pH3 pH4 pH5 pH3 pH4 pH5 pH3 pH4 pH5

No. of PLFAs 14 22 22 22 27 27 27 27 26 26

Shannon's INDEX 0.788
(0.018)

1.043
(0.04)

1.037
(0.079)

0.999
(0.08)

1.075
(0.023)

1.037
(0.013)

1.026
(0.014)

1.023
(0.16)

1.062
(0.131)

1.001
(0.25)

Evenness 0.687
(0.015)

0.777
(0.03)

0.773
(0.059)

0.744
(0.06)

0.751
(0.071)

0.72
(0.003)

0.717
(0.01)

0.667
(0.112)

0.743
(0.093)

0.696
(0.177)

Simpson Diversity 0.704
(0.006)

0.791
(0.003)

0.782
(0.023)

0.796
(0.011)

0.818
(0.011)

0.818
(0.006)

0.818
(0.003)

0.853
(0.007)

0.862
(0.011)

0.864
(0.046)
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ly. Bååth and Anderson (2003) argued that the fungi/bac-

teria ratio measured using the selective inhibition tech-

nique decreased significantly with increasing pH from 

about 9 at pH 3 to approximately 2 at pH 7. These results 

indicate that low pH facilitates respiration or growth of 

microbial groups that are not inhibited by fungal inhibi-

tion agent. On the other hand, the fungi/bacteria ratio by 

PLFA showed smaller differences between pH treatments 

as decomposition proceeded. This result demonstrates 

the fungal predomination at early stage of litter decom-

position and bacterial predomination at later decomposi-

tion stages.

Bååth et al. (1995), Bååth and Arnebrant (1994), Pen-

nanen et al. (1999), and Arao (1999) also reported that 

concentration of PLFAs had positive relationships with 

microbial biomass of SIR (Fig. 5). Total microbial biomass 

of SIR and total amount of PLFAs has R2 = 0.7509, and P < 

0.001 significant positive relationship, and the 1mg total 

microbial biomass estimated with SIR was equivalent to 

175 nmol of total PLFAs. 

The fungal and bacterial composition determined by 

SIR and PLFA at the decomposing litter changed by acid 

treatment and litter decomposition stage (Fig. 6). The 

fungi/bacteria ratio by SIR and PLFA showed different 

pattern. These results might be due to the microbial state, 

for example sporulation, another nonliving deliberation 

such as humic acid (Nielsen and Petersen 2000), and the 

ability of response to the nutrient such as glucose (Bailey 

et al. 2002).

 The SIR fungi/bacteria ratio increased throughout the 

decomposition process; however, at pH 4 the ratio de-

creased at the late decomposition process. On the other 

hand, the fungi/bacteria ratio by PLFA was below 1 at low 

pH treatments and decomposition stages, though the ra-

tio dramatically decreased at the late stage of decomposi-

tion at pH 4 and 5 treatment.

The fungi/bacteria ratio by SIR was higher than that 

by PLFA which was always below 1. Especially in low pH 

treatment, the fungi/bacteria ratio increased dramatical-
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Fig. 6. Changes in fungal-to-bacterial biomass ratio measured by SIR(left) and PLFA(right) during S. alnifolia leaf litter decomposition at different pH 
treatments in the microcosm environment. The error bars indicate standard deviation. 
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Fig. 5. The relationship between microbial biomass-C (mg Cmic/g) by SIR and PLFAs (μmol/g) during litter decomposition in the microcosm.

Table 3. The relationships between litter decomposition and three 
microbial biomass parameters present in the decaying leaf litter from the 
different simulated acid rain pH treatments, taken at 23°C and at constant 
humidity

Microbial biomass by 
PLFA (x)

Litter 
decomposition

R2 P-value

Total microbial biomass 2.040x + 21.53 0.739 0.003

Bacterial biomass 6.498x + 20.70 0.783 0.002

Fungal biomass 9.580x + 23.92 0.737 0.003

Note: PLFA, phospholipid fatty acid.
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microbial biomass in the organic layer, and leaching of 

NO3
- (Wolter 1991a, 1991b, Lim et al. 2011); consequently, 

the soil acidification due to anthropogenic activities may 

be too fast for microbial communities to adapt to new, 

changed conditions (Berg and Laskowski 2006). 
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