Browse > Article
http://dx.doi.org/10.5303/PKAS.2015.30.2.283

DUST PRODUCTION BY EVOLVED STARS IN THE MAGELLANIC CLOUDS  

KEMPER, F. (Academia Sinica, Institute of Astronomy and Astrophysics)
Publication Information
Publications of The Korean Astronomical Society / v.30, no.2, 2015 , pp. 283-287 More about this Journal
Abstract
Within the context of the hugely successful SAGE-LMC and SAGE-SMC surveys, Spitzer photometry observations of the Large and Small Magellanic Clouds have revealed millions of infrared point sources in each galaxy. The brightest infrared sources are generally dust producing and mass-losing evolved stars, and several tens of thousands of such stars have been classified. After photometrically classifying these objects, the dust production by several kinds of evolved stars - such as Asymptotic Giant Branch stars and Red Supergiants - can be determined. SAGE-Spec is the spectroscopic follow-up to the SAGE-LMC survey, and it has obtained Spitzer-IRS $5-40{\mu}m$ spectroscopy of about 200 sources in the LMC. Combined with archival data from other programs, observations at a total of ~1000 pointings have been obtained in the LMC, while ~250 IRS pointings were observed in the SMC. Of these, a few hundred pointings represent dust producing and mass-losing evolved stars, covering a range in colors, luminosities, and thus mass-loss rates. Red Supergiants and O-rich and C-rich AGB stars - the main dust producers - are well represented in the spectroscopic sample. This paper will summarize what we know about the mineralogy of dust producing evolved stars, and discuss their relative importance in the total dust budget.
Keywords
dust, extinction; Magellanic Clouds; stars: late-type; stars: mass-loss;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Blum, R. D., Mould, J. R., & Olsen, K. A., et al., 2006, Spitzer SAGE Survey of the Large Magellanic Cloud. II. Evolved Stars and Infrared Color-Magnitude Diagrams, AJ, 132, 2034   DOI   ScienceOn
2 Boyer, M. L., Sargent, B., & van Loon, J. T., et al., 2010, Cold Dust in Three Massive Evolved Stars in the LMC, A&A, 518, L142   DOI   ScienceOn
3 Boyer, M. L., Srinivasan, S., & van Loon, J. T., et al., 2011, Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). II. Cool Evolved Stars, AJ, 142, 103   DOI   ScienceOn
4 Draine, B. T. & Lee, H. M., 1984, Optical Properties of Interstellar Graphite and Silicate Grains, ApJ, 285, 89   DOI
5 Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A.U., & Wolff, M.J., 2003, A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves, ApJ, 594, 279   DOI
6 Gordon, K. D., Meixner, M., & Meade, M. R., et al., 2011, Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). I. Overview, AJ, 142, 102   DOI   ScienceOn
7 Gordon, K. D., Roman-Duval, J., & Bot, C., et al., 2014, Dust and Gas in the Magellanic Clouds from the HER-ITAGE Herschel Key Project. I. Dust Properties and In-sights into the Origin of the Submm Excess Emission, ApJ, 797, 85   DOI
8 Groenewegen, M. A. T., Sloan, G. C., Soszynski, I., & Pe-tersen, E. A., 2009, Luminosities and Mass-loss Rates of SMC and LMC AGB Stars and Red Supergiants, A&A, 506, 1277   DOI   ScienceOn
9 Gruendl, R. A., & Chu, Y., 2009, High- and Intermediate-Mass Young Stellar Objects in the Large Magellanic Cloud, ApJS, 184, 172   DOI
10 Gruendl, R. A., Chu, Y. H., Seale, J. P., Matsuura, M., Speck, A. K., Sloan, G. C., & Looney, L. W., 2008, Discovery of Extreme Carbon Stars in the Large Magellanic Cloud, ApJ, 688, L9   DOI
11 Harris, J. & Zaritsky, D., 2009, The Star Formation History of the Large Magellanic Cloud, AJ, 138, 1243   DOI   ScienceOn
12 Hony, S., Waters, L. B. F. M., & Tielens, A. G. G. M., 2002, The Carrier of the "30" ${\mu}m$ Emission Feature in Evolved Stars. A Simple Model Using Magnesium Sulfide, A&A, 390, 533   DOI   ScienceOn
13 Jiang, B., Li, A., Liu, J., Gao, J., & Mishra, A., 2013, Unidentified Species in envelopes around evolved stars, in J. Cami & N. Cox, eds., Diffuse Interstellar Bands, IAU Symp. 297
14 Jones, A. P., 2005, Dust Formation, Propagation and Survival in the ISM., ESA Special Publication, 577, 239
15 Kemper, F., Markwick, A. J., & Woods, P. M., 2011, The Crystalline Fraction of Interstellar Silicates in Starburst Galaxies, MNRAS, 413, 1192   DOI   ScienceOn
16 Jones, O. C., Kemper, F., & Sargent, B. A., et al., 2012, On the Metallicity Dependence of Crystalline Silicates in Oxygen-rich Asymptotic Giant Branch Stars and Red Supergiants, MNRAS, 427, 3209   DOI   ScienceOn
17 Jones, O. C., Kemper, F., Srinivasan, S., McDonald, I., Sloan, G. C., & Zijlstra, A. A., 2014, Modelling the Alumina Abundance of Oxygen-rich Evolved Stars in the Large Magellanic Cloud, MNRAS, 440, 631   DOI
18 Kemper, F., 2013, Stellar Dust Production and Composition in the Magellanic Clouds, Earth, Planets and Space, 65, 223   DOI
19 Kemper, F., Waters, L. B. F. M., de Koter, A., & Tielens, A. G. G. M., 2001, Crystallinity Versus Mass-loss Rate in Asymptotic Giant Branch Stars, A&A, 369, 132   DOI   ScienceOn
20 Kemper, F., Woods, P. M., & Antoniou, V., et al., 2010, The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud, PASP, 122, 683   DOI   ScienceOn
21 Lagadec, E., Zijlstra, A. A., & Sloan, G. C., et al., 2007, Spitzer Spectroscopy of Carbon Stars in the Small Magellanic Cloud, MNRAS, 376, 1270   DOI   ScienceOn
22 Leisenring, J. M., Kemper, F., & Sloan, G. C., 2008, Effects of Metallicity on the Chemical Composition of Carbon Stars, ApJ, 681, 1557   DOI
23 Matsuura, M., Dwek, E., & Meixner, M., et al., 2011, Herschel Detects a Massive Dust Reservoir in Supernova 1987A, Science, 333, 1258   DOI   ScienceOn
24 Sargent, B. A., Srinivasan, S., & Meixner, M., 2011, The Mass-loss Return from Evolved Stars to the Large Magel-lanic Cloud. IV. Construction and Validation of a Grid of Models for oxygen-rich AGB Stars, Red Supergiants, and Extreme AGB Stars, ApJ, 728, 93   DOI
25 Meixner, M., Gordon, K.D ., & Indebetouw, R., et al., 2006, Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy's Evolution (SAGE). I. Overview and Initial Results, AJ, 132, 2268   DOI   ScienceOn
26 Otsuka, M., Kemper, F., Cami, J., Peeters, E., & Bernard-Salas, J., 2014, Physical Properties of Fullerene-containing Galactic Planetary Nebulae, MNRAS, 437, 2577   DOI
27 Riebel, D., Srinivasan, S., Sargent, B., & Meixner, M., 2012, The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. VI. Luminosities and Mass-loss Rates on Population Scales, ApJ, 753, 71   DOI
28 Sargent, B. A., Srinivasan, S., & Meixner, M., et al., 2010, The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. II. Dust Properties for oxygen-rich Asymptotic Giant Branch Stars, ApJ, 716, 878   DOI
29 Schneider, R., Valiante, R., Ventura, P., dell'Agli, F., Di Criscienzo, M., Hirashita, H., & Kemper, F., 2014, Dust production Rate of Asymptotic Giant Branch Stars in the Magellanic Clouds, MNRAS, 442, 1440   DOI
30 Skibba, R. A., Engelbracht, C. W., & Aniano, G., et al., 2012, The Spatial Distribution of Dust and Stellar Emission of the Magellanic Clouds, ApJ, 761, 42   DOI
31 Srinivasan, S., Meixner, M., & Leitherer, C., et al., 2009, The Mass Loss Return from Evolved Stars to the Large Magellanic Cloud: Empirical Relations for Excess Emission at 8 and 24 ${\mu}m$, AJ, 137, 4810   DOI   ScienceOn
32 Ueta, T. & Meixner, M., 2003, 2-dust: A Dust Radiative Transfer Code for an Axisymmetric System, ApJ, 586, 1338   DOI
33 Srinivasan, S., Sargent, B. A., & Matsuura, M., et al., 2010, The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. III. Dust Properties for Carbon-rich Asymptotic Giant Branch Stars, A&A, 524, A49   DOI   ScienceOn
34 Srinivasan, S., Sargent, B.A., & Meixner, M., 2011, The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. V. The GRAMS Carbon-star Model Grid, A&A, 532, A54   DOI   ScienceOn
35 Tielens, A. G. G. M., Waters, L. B. F. M., & Bernatowicz, T. J., 2005, Origin and Evolution of Dust in Circumstel-lar and Interstellar Environments, in A. N. Krot, E. R. D. Scott & B. Reipurth, eds., Chondrites and the Protoplan-etary Disk, ASP Conf. Series 341, 605-631
36 Volk, K., Hrivnak, B. J., & Matsuura, M., et al., 2011, Discovery and Analysis of $21{\mu}m$ Feature Sources in the Mag-ellanic Clouds, ApJ, 735, 127   DOI
37 Woods, P. M., Oliveira, J. M., & Kemper, F., et al., 2011, The SAGE-Spec Spitzer Legacy Programme: the Life-cycle of Dust and Gas in the Large Magellanic Cloud-Point Source Classification I, MNRAS, 411, 1597   DOI   ScienceOn
38 Zhang, K., Jiang, B. W., & Li, A., 2009, On Magnesium Sulfide as the Carrier of the $30{\mu}m$ Emission Feature in Evolved Stars, ApJ, 702, 680   DOI
39 Zhukovska, S., Gail, H. P., & Trieloff, M., 2008, Evolution of Interstellar Dust and Stardust in the Solar Neighbour-hood, A&A, 479, 453   DOI   ScienceOn
40 Zijlstra, A. A., Matsuura, M., & Wood, P. R., et al., 2006, A Spitzer Mid-infrared Spectral Survey of Mass-losing Carbon Stars in the Large Magellanic Cloud, MNRAS, 370, 1961   DOI   ScienceOn