DOI QR코드

DOI QR Code

DUST PRODUCTION BY EVOLVED STARS IN THE MAGELLANIC CLOUDS

  • KEMPER, F. (Academia Sinica, Institute of Astronomy and Astrophysics)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

Within the context of the hugely successful SAGE-LMC and SAGE-SMC surveys, Spitzer photometry observations of the Large and Small Magellanic Clouds have revealed millions of infrared point sources in each galaxy. The brightest infrared sources are generally dust producing and mass-losing evolved stars, and several tens of thousands of such stars have been classified. After photometrically classifying these objects, the dust production by several kinds of evolved stars - such as Asymptotic Giant Branch stars and Red Supergiants - can be determined. SAGE-Spec is the spectroscopic follow-up to the SAGE-LMC survey, and it has obtained Spitzer-IRS $5-40{\mu}m$ spectroscopy of about 200 sources in the LMC. Combined with archival data from other programs, observations at a total of ~1000 pointings have been obtained in the LMC, while ~250 IRS pointings were observed in the SMC. Of these, a few hundred pointings represent dust producing and mass-losing evolved stars, covering a range in colors, luminosities, and thus mass-loss rates. Red Supergiants and O-rich and C-rich AGB stars - the main dust producers - are well represented in the spectroscopic sample. This paper will summarize what we know about the mineralogy of dust producing evolved stars, and discuss their relative importance in the total dust budget.

Keywords

References

  1. Blum, R. D., Mould, J. R., & Olsen, K. A., et al., 2006, Spitzer SAGE Survey of the Large Magellanic Cloud. II. Evolved Stars and Infrared Color-Magnitude Diagrams, AJ, 132, 2034 https://doi.org/10.1086/508227
  2. Boyer, M. L., Sargent, B., & van Loon, J. T., et al., 2010, Cold Dust in Three Massive Evolved Stars in the LMC, A&A, 518, L142 https://doi.org/10.1051/0004-6361/201014513
  3. Boyer, M. L., Srinivasan, S., & van Loon, J. T., et al., 2011, Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). II. Cool Evolved Stars, AJ, 142, 103 https://doi.org/10.1088/0004-6256/142/4/103
  4. Draine, B. T. & Lee, H. M., 1984, Optical Properties of Interstellar Graphite and Silicate Grains, ApJ, 285, 89 https://doi.org/10.1086/162480
  5. Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A.U., & Wolff, M.J., 2003, A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves, ApJ, 594, 279 https://doi.org/10.1086/376774
  6. Gordon, K. D., Meixner, M., & Meade, M. R., et al., 2011, Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). I. Overview, AJ, 142, 102 https://doi.org/10.1088/0004-6256/142/4/102
  7. Gordon, K. D., Roman-Duval, J., & Bot, C., et al., 2014, Dust and Gas in the Magellanic Clouds from the HER-ITAGE Herschel Key Project. I. Dust Properties and In-sights into the Origin of the Submm Excess Emission, ApJ, 797, 85 https://doi.org/10.1088/0004-637X/797/2/85
  8. Groenewegen, M. A. T., Sloan, G. C., Soszynski, I., & Pe-tersen, E. A., 2009, Luminosities and Mass-loss Rates of SMC and LMC AGB Stars and Red Supergiants, A&A, 506, 1277 https://doi.org/10.1051/0004-6361/200912678
  9. Gruendl, R. A., & Chu, Y., 2009, High- and Intermediate-Mass Young Stellar Objects in the Large Magellanic Cloud, ApJS, 184, 172 https://doi.org/10.1088/0067-0049/184/1/172
  10. Gruendl, R. A., Chu, Y. H., Seale, J. P., Matsuura, M., Speck, A. K., Sloan, G. C., & Looney, L. W., 2008, Discovery of Extreme Carbon Stars in the Large Magellanic Cloud, ApJ, 688, L9 https://doi.org/10.1086/593979
  11. Harris, J. & Zaritsky, D., 2009, The Star Formation History of the Large Magellanic Cloud, AJ, 138, 1243 https://doi.org/10.1088/0004-6256/138/5/1243
  12. Hony, S., Waters, L. B. F. M., & Tielens, A. G. G. M., 2002, The Carrier of the "30" ${\mu}m$ Emission Feature in Evolved Stars. A Simple Model Using Magnesium Sulfide, A&A, 390, 533 https://doi.org/10.1051/0004-6361:20020603
  13. Jiang, B., Li, A., Liu, J., Gao, J., & Mishra, A., 2013, Unidentified Species in envelopes around evolved stars, in J. Cami & N. Cox, eds., Diffuse Interstellar Bands, IAU Symp. 297
  14. Jones, A. P., 2005, Dust Formation, Propagation and Survival in the ISM., ESA Special Publication, 577, 239
  15. Jones, O. C., Kemper, F., & Sargent, B. A., et al., 2012, On the Metallicity Dependence of Crystalline Silicates in Oxygen-rich Asymptotic Giant Branch Stars and Red Supergiants, MNRAS, 427, 3209 https://doi.org/10.1111/j.1365-2966.2012.21978.x
  16. Jones, O. C., Kemper, F., Srinivasan, S., McDonald, I., Sloan, G. C., & Zijlstra, A. A., 2014, Modelling the Alumina Abundance of Oxygen-rich Evolved Stars in the Large Magellanic Cloud, MNRAS, 440, 631 https://doi.org/10.1093/mnras/stu286
  17. Kemper, F., 2013, Stellar Dust Production and Composition in the Magellanic Clouds, Earth, Planets and Space, 65, 223 https://doi.org/10.5047/eps.2012.04.013
  18. Kemper, F., Markwick, A. J., & Woods, P. M., 2011, The Crystalline Fraction of Interstellar Silicates in Starburst Galaxies, MNRAS, 413, 1192 https://doi.org/10.1111/j.1365-2966.2011.18204.x
  19. Kemper, F., Waters, L. B. F. M., de Koter, A., & Tielens, A. G. G. M., 2001, Crystallinity Versus Mass-loss Rate in Asymptotic Giant Branch Stars, A&A, 369, 132 https://doi.org/10.1051/0004-6361:20010086
  20. Kemper, F., Woods, P. M., & Antoniou, V., et al., 2010, The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud, PASP, 122, 683 https://doi.org/10.1086/653438
  21. Lagadec, E., Zijlstra, A. A., & Sloan, G. C., et al., 2007, Spitzer Spectroscopy of Carbon Stars in the Small Magellanic Cloud, MNRAS, 376, 1270 https://doi.org/10.1111/j.1365-2966.2007.11517.x
  22. Leisenring, J. M., Kemper, F., & Sloan, G. C., 2008, Effects of Metallicity on the Chemical Composition of Carbon Stars, ApJ, 681, 1557 https://doi.org/10.1086/588378
  23. Matsuura, M., Dwek, E., & Meixner, M., et al., 2011, Herschel Detects a Massive Dust Reservoir in Supernova 1987A, Science, 333, 1258 https://doi.org/10.1126/science.1205983
  24. Meixner, M., Gordon, K.D ., & Indebetouw, R., et al., 2006, Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy's Evolution (SAGE). I. Overview and Initial Results, AJ, 132, 2268 https://doi.org/10.1086/508185
  25. Otsuka, M., Kemper, F., Cami, J., Peeters, E., & Bernard-Salas, J., 2014, Physical Properties of Fullerene-containing Galactic Planetary Nebulae, MNRAS, 437, 2577 https://doi.org/10.1093/mnras/stt2070
  26. Riebel, D., Srinivasan, S., Sargent, B., & Meixner, M., 2012, The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. VI. Luminosities and Mass-loss Rates on Population Scales, ApJ, 753, 71 https://doi.org/10.1088/0004-637X/753/1/71
  27. Sargent, B. A., Srinivasan, S., & Meixner, M., 2011, The Mass-loss Return from Evolved Stars to the Large Magel-lanic Cloud. IV. Construction and Validation of a Grid of Models for oxygen-rich AGB Stars, Red Supergiants, and Extreme AGB Stars, ApJ, 728, 93 https://doi.org/10.1088/0004-637X/728/2/93
  28. Sargent, B. A., Srinivasan, S., & Meixner, M., et al., 2010, The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. II. Dust Properties for oxygen-rich Asymptotic Giant Branch Stars, ApJ, 716, 878 https://doi.org/10.1088/0004-637X/716/1/878
  29. Schneider, R., Valiante, R., Ventura, P., dell'Agli, F., Di Criscienzo, M., Hirashita, H., & Kemper, F., 2014, Dust production Rate of Asymptotic Giant Branch Stars in the Magellanic Clouds, MNRAS, 442, 1440 https://doi.org/10.1093/mnras/stu861
  30. Skibba, R. A., Engelbracht, C. W., & Aniano, G., et al., 2012, The Spatial Distribution of Dust and Stellar Emission of the Magellanic Clouds, ApJ, 761, 42 https://doi.org/10.1088/0004-637X/761/1/42
  31. Srinivasan, S., Meixner, M., & Leitherer, C., et al., 2009, The Mass Loss Return from Evolved Stars to the Large Magellanic Cloud: Empirical Relations for Excess Emission at 8 and 24 ${\mu}m$, AJ, 137, 4810 https://doi.org/10.1088/0004-6256/137/6/4810
  32. Srinivasan, S., Sargent, B. A., & Matsuura, M., et al., 2010, The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. III. Dust Properties for Carbon-rich Asymptotic Giant Branch Stars, A&A, 524, A49 https://doi.org/10.1051/0004-6361/201014991
  33. Srinivasan, S., Sargent, B.A., & Meixner, M., 2011, The Mass-loss Return from Evolved Stars to the Large Magellanic Cloud. V. The GRAMS Carbon-star Model Grid, A&A, 532, A54 https://doi.org/10.1051/0004-6361/201117033
  34. Tielens, A. G. G. M., Waters, L. B. F. M., & Bernatowicz, T. J., 2005, Origin and Evolution of Dust in Circumstel-lar and Interstellar Environments, in A. N. Krot, E. R. D. Scott & B. Reipurth, eds., Chondrites and the Protoplan-etary Disk, ASP Conf. Series 341, 605-631
  35. Ueta, T. & Meixner, M., 2003, 2-dust: A Dust Radiative Transfer Code for an Axisymmetric System, ApJ, 586, 1338 https://doi.org/10.1086/367818
  36. Volk, K., Hrivnak, B. J., & Matsuura, M., et al., 2011, Discovery and Analysis of $21{\mu}m$ Feature Sources in the Mag-ellanic Clouds, ApJ, 735, 127 https://doi.org/10.1088/0004-637X/735/2/127
  37. Woods, P. M., Oliveira, J. M., & Kemper, F., et al., 2011, The SAGE-Spec Spitzer Legacy Programme: the Life-cycle of Dust and Gas in the Large Magellanic Cloud-Point Source Classification I, MNRAS, 411, 1597 https://doi.org/10.1111/j.1365-2966.2010.17794.x
  38. Zhang, K., Jiang, B. W., & Li, A., 2009, On Magnesium Sulfide as the Carrier of the $30{\mu}m$ Emission Feature in Evolved Stars, ApJ, 702, 680 https://doi.org/10.1088/0004-637X/702/1/680
  39. Zhukovska, S., Gail, H. P., & Trieloff, M., 2008, Evolution of Interstellar Dust and Stardust in the Solar Neighbour-hood, A&A, 479, 453 https://doi.org/10.1051/0004-6361:20077789
  40. Zijlstra, A. A., Matsuura, M., & Wood, P. R., et al., 2006, A Spitzer Mid-infrared Spectral Survey of Mass-losing Carbon Stars in the Large Magellanic Cloud, MNRAS, 370, 1961 https://doi.org/10.1111/j.1365-2966.2006.10623.x