• Title/Summary/Keyword: Mass Conservation

Search Result 519, Processing Time 0.026 seconds

Rapid micropropagation of wild garlic (Allium victorialis var. platyphyllum) by the scooping method

  • Jeong, Mi Jin;Yong, Seong Hyeon;Kim, Do Hyeon;Park, Kwan Been;Kim, Hak Gon;Choi, Pil Son;Choi, Myung Suk
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.213-221
    • /
    • 2022
  • Wild garlic (Allium victorialis var. platyphyllum, AVVP) is a nontimber forest product used as an edible and medicinal vegetable. AVVP is usually propagated form offspring bulbs but it takes a long time to harvest. Using tissue culture technology could overcome this problem. This study investigated the optimal conditions for shoot multiplication, root growth, and plant growth by scooping AVVP bulbs. AVVP bulbs harvested from Ulleung Island, Korea, the main producer of AVVP, were surface-sterilized and used for in vitro propagation. Shoot multiplication was performed by the scooping method. More than five multiple shoots were induced from scooped tissue in Quoirin and Lepoivre (QL) medium containing plant growth regulators (PGRs); the maximum number of multiple shoots were induced from scooped tissue in QL medium containing 0.45 μM thidiazuron (TDZ) after 16 weeks of culture. Roots were induced directly at the base of the shoots in all treatments. In vitro rooting depended on the type of PGRs, and the best root-inducing treatment was QL medium containing 9.84 μM indole-3-butyric acid (IBA). Plants with in vitro roots were transferred to pots containing artificial soil and successfully acclimatized for 4 weeks. The acclimatized plants showed a survival rate of 80% after 20 weeks and gradually promoted growth depending on the acclimatization period. The results of this study will be of great help to AVVP dissemination through sustainable mass propagation.

Nonlinear Transformation of Long Waves at a Bottom Step (해저단에서의 장파의 비선형 변형)

  • Mrichina, Nina R.;Pelinovsky, Efim N.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.161-167
    • /
    • 1992
  • We consider the preparation of long finite amplitude nondispersive waves over a step bottom between two regions of finite different depths. Two dimensional motion is assumed. with the wave crests parallel to the step, and irrotational flow in the inviscid fluid is considered. To describe the transformation of finite amplitude waves we use the finite-amplitude shallow-water equations, the conditions of mass flow conservation and pressure continuity at the cut above the step in Riemann's variables. The equations define four families of curves-characteristics on which the values of the Riemann's invariants remain constant and a system of two nonlinear equations that relates the amplitudes of incident reflected and transmitted waves. The system obtained is difficult to analyze in common form. Thus we consider some special cases having practical usage for tsunami waves. The results obtained are compared with the long wave theory and significant nonlinear effects are found even for quite small amplitude waves.

  • PDF

A Study on Cryogenic Line Chill Down Characteristics of LNG (극저온 LNG 배관냉각 특성에 대한 연구)

  • BYEONGCHANG, BYEON;KYOUNG JOONG, KIM;SANGKWON, JEONG;MO SE, KIM;SANGYOON, LEE;KEUN TAE, LEE;DONGMIN, KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.808-818
    • /
    • 2022
  • In this research paper, we investigated the cryogenic line chill down characteristics of liquefied natural gas (LNG). A numerical analysis model was established and verified so that it can calculate the precise cooling characteristics of cryogenic fluid for the stable and safe utilization especially such as LNG and liquid hydrogen. The numerical modeling was programmed by C++ as an one-dimensional homogeneous model. The thermohydraulic cooling process was simulated using mass, momentum, energy conservation equations and appropriate heat transfer correlations. In this process, the relevant heat transfer correlations for nuclear boiling, transition boiling, film boiling, and single-phase heat transfer that can predict the experimental results were implemented. To verify the numerical modeling, several cryogenic line chill down experiments using LNG were conducted at the Korea Institute of Machinery & Materials (KIMM) LNG and Cryogenic Technology Center.

A three-region movable-boundary helical coil once-through steam generator model for dynamic simulation and controller design

  • Shifa Wu;Zehua Li;Pengfei Wang;G.H. Su;Jiashuang Wan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.460-474
    • /
    • 2023
  • A simple but accurate mathematical model is crucial for dynamic simulations and controller design of helical coil once-through steam generator (OTSG). This paper presents a three-region movable boundary dynamic model of the helical coil OTSG. Based on the secondary side fluid conditions, the OTSG is divided into subcooled region (two control volumes), two-phase region (two control volumes) and superheated region (three control volumes) with movable boiling boundaries between each region. The nonlinear dynamic model is derived based on mass, energy and momentum conservation equations. And the linear model is obtained by using the transfer function and state space transformation, which is a 37-order model of five input and three output. Validations are made under full-power steady-state condition and four transient conditions. Results show good agreements among the nonlinear model, linear model and the RELAP5 model, with acceptable errors. This model can be applied to dynamic simulations and controller design of helical coil OTSG with constant primary-side flow rate.

Uncertainty of the operational models in the Nakdong River mouth (낙동강 하구 환경변화 예측모형의 불확실성)

  • Cho, Hong Yeon;Lee, Gi Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.4-4
    • /
    • 2022
  • 낙동강 하구 환경/생태 복원을 위하여 "해수유입"으로 하구환경을 조성하는 사업이 추진되고 있으며, 해수 유입 규모와 빈도에 따른 생태환경변화를 예측하는 연구수요가 증가하고 있는 상황이다. 보다 구체적으로는 단기간의 해수유입에 의한 흐름 및 염분 확산범위 예측과 더불어 보다 장기간의 지형변화, 수질환경 변화, 생태환경 변화 등에 대한 예측이 필요한 상황이다. 그리고 그 예측의 대부분을 수치모델에 크게 의존하고 있는 상황이다. 그러나, 수치모형을 이용한 단기 예측은 가까운 미래에 대한 입력조건을 사용하여야 하기 때문에 입력조건에 대한 불확실성이 포함되고, 환경생태모형의 불확실성에 따른 예측 한계 등으로 인하여 오차가 누적되기 때문에 직접적인 활용에 크게 제한이 따를 수 있다. 또한 운영과정에서 어떤 분산, 편향 오차 등이 지속적으로 발생하는 경우, 모델 예측 결과에 대한 신뢰수준이 크게 감소하기 때문에 모델의 적절한 운영기법이 요구된다. 모델은 관심을 가지는 자연현상에 대한 근사(approximation)이고, 예상하지 못한 오차가 발생할 수 있기 때문에 관측 자료를 이용한 자료동화(data assimilation) 과정이 운영모델에서는 필수적인 부분이다. 이론적인 기반이 탄탄한 유체역학 기반 기상예측의 경우에도, 가용한 모든 지점의 관측 자료를 이용한 자료 동화과정을 통하여 모델 예측 결과를 개선하여 나가는 과정을 포함하여 운영하고 있다. 이 과정이 포함하는 중요한 개념은 수치모델이 가지고 있는 (예측 수준의) 한계를 인정하고, 수치모델에 전적으로 의존하는 것이 아니라 관측 자료를 이용하여 그 한계를 저감하여 나가는 과정이다. 모니터링은 모델의 한계를 알려주는 지표이다. 모델링과 모니터링의 불가피한 상호의존 관계를 의미하는 이 개념은 단기간의 흐름, 염분 확산 예측으로 한정되지 않고, 장기적인 변화가 예상되는 생태환경변화 모델에도 적용이 된다. 즉각적인 변화보다는 장기적인 관점에서 파악하여야 하는 생태학적인 변화는 보다 다양한 인자가 관여하기 때문에 어떤 측면에서는 모델보다는 적절한 빈도와 항목에 대한 관측계획 수립(monitoring design)이 더 중요하다고 할 수 있다. 이론적인 질량보존(mass conservation) 방정식을 기반으로 하는 모델은 다양한 현실적인 인자의 영향을 받기 때문에 모델의 한계를 인정하고, 모니터링 자료를 적극적으로 활용하여 불확실성을 저감하는 접근방식이 요구된다.

  • PDF

Numerical Analysis of Molten Carbonate Fuel Cell Stack Using Computational Fluid Dynamics (CFD를 이용한 용융탄산염 연료전지 스택의 수치모사)

  • Lee, Kab-Soo;Cho, Hyun-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.155-161
    • /
    • 2005
  • In this paper, commercial CFD program FLUENT v5.3 is used for simulation of MCFC stack. Besides using conservation equations included in FLUENT by default, mass change, mole fraction change and heat added or removed due to electrochemical reactions and water gas shift reaction are considered by adding several equations using user defined function. The stacks calculated are 6 and 25 kW class coflow stack which are composed of 20 and 40 unit cells respectively. Simulation results showed that pressure drop took place in the direction of gas flow, and the pressure drop of cathode side is more larger than that of anode side. And the velocity of cathode gas decreased along with the gas flow direction, but the velocity of anode gas increased because of the mass and volume changes by the chemical reactions in each electrodes. Simulated temperature profile of the stack tended to increase along with the gas flow direction and it showed similar results with the experimental data. Water gas shift reaction was endothermic at the gas inlet side but it was exothermic at the outlet side of electrode respectively. Therefore water gas shift reaction played a role in increasing temperature difference between inlet and outlet side of stack. This results suggests that the simulation of large scale commercial stacks need to consider water gas shift reaction.

A Study on the Removal of Ammonia by Using Peat Biofilter (미생물 활성토탄을 이용한 암모니아 제거에 관한 연구)

  • Choung, Youn Kyoo;Ahn, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.655-668
    • /
    • 1994
  • Conventional deodorization filters using soil and compost reach the capacity limitation of deodorization in short period, because its removal mechanism primarily depends on adsorption. Therefore, in this study the experiment was performed on the removal of ammonia which is a strong inorganic malodor, frequently emitted from night soil treatment plants and sewage treatment plants, by seeding activated sludges on the bio-peat containing higher organic contents, water conservation capacity, permeability and lower pressure drop. As a result, in raw peat filter natural ammonia outlet was observed in consequence of pH increase resulted from ammonia ionizing in liquid phase. Ammonia removal mechanism primarily depended on the adsorption onto the anion colloidal substances in peat. In peat bio-filter, theoretical ammonium salts ratio was higher than that of raw peat, resulted from slight pH increase by microorganism activity, however, the experimetal value of ammonia-nitrogen accumulated in bio-peat was lower than that of raw peat because of nitrification by nitrifying bacteria. In the initial reaction period, adsorption was predominant in the ammonia removal mechanism, but nitrification was conspicuous after the middle period. Mass balance of nitrogen was established using experimental data of input $NH_3$ loading, output $NH_3$ loading, $NH_4{^+}$-N, $NO_x$-N, and Org-N. The critical time of unsteady state, which is the maximum activating point of microorganism in bio-filter, was determined using experimental data, and the ammonia adsorption curve was computed using regression analysis. On the basis of the results obtained by above analysis, the delay days for the saturation of adsoption capacity in peat bio-filter was calculated.

  • PDF

Effects of weather change, human disturbance and interspecific competition on life-history and migration of wintering Red-crowned cranes (기후변화와 인간의 방해 및 종간경쟁이 두루미 월동생태와 이동에 미치는 영향)

  • Hong, Mi-Jin;Lee, Who-Seung;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.681-692
    • /
    • 2015
  • It is well documented that physiological and nutritional condition of wintering birds is strongly related to migration success to breeding sites, and also breeding success. However, how abiotic factors during winter affect the migration and breeding successes still remains unclear. Thus, this study developed a dynamic-state-dependent model for wintering life-history to identify the potential impact on the life-history, success to breeding site and breeding success of wintering birds, which are related to temperature fluctuation, interspecific competition and human disturbance at the wintering sites. To find the best-fit-model, we referred to the existing research data on wintering ecology of Red-crowned cranes (Grus japonensis) in Cheolwon, Korea, which is well documented as a long-term wintering study. Our model predicted that the higher temperature fluctuation and a higher rate of human disturbance are negatively related to migration success to breeding sites and their fitness, ultimately breeding success via changing of proportion in resource allocation (for e. g., lower energy compensation or higher level of stress accumulation). Particularly, the rate of body mass compensation after arrival at wintering sites may be accelerated when there are less temperature fluctuations and a lower rate of human disturbance. In addition, the rate of interspecific competition sharing the wintering foraging sites is negatively related to the rate of body mass compensation. Consequently, we discussed the conservation strategies of wintering birds based on the outcomes of the model.

Effects of Climate and Human Aquatic Activity on Early Life-history Traits in Fish (기후변화와 수상레저활동 인구변화가 어류의 초기생활사에 미치는 영향)

  • Lee, Who-Seung
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.395-408
    • /
    • 2013
  • Environmental condition can induce changes in early life-history traits in order to maximise the ecological fitness. Here I investigated how temperature change and variation in human aquatic activity/behaviour affect early life-history consequences in fish using a dynamic-state-dependent model. In this study, I developed a general fish's life-history model including three life-history states depend-ing on foraging activity, such as body mass, mass of reproductive tissue (i.e., gonadal development) and accumulated stress (i.e., cellular or physiological damage). I assumed the level of foraging activity maximises reproductive success-ultimately, fitness. The model predicts that growth rate, development of reproductive tissues and damage accumulation are greater in higher temperature whereas higher human aquatic activity rapidly reduced the growth rate and development of reproductive tissue and increased damage accumulation. While higher foraging activity in higher temperature is less affected by human aquatic activity, the foraging activity in lower temperature rapidly declined with human aquatic activity. Moreover, lower survival rate in higher temperature or human aquatic activity was independent on mortality rate due to human aquatic activity or mortality rate when foraging activity, respectively. However, the survival rate in lower temperature or human aquatic activity was dependent on these mortality rates. My findings suggest that including of early life-history traits in relation to climate-change and human aquatic activity on the analysis may improve conservation plan and health assessment in aquatic ecosystem.

Microtuber Formation from In Vitro Codonopsis lanceolata Plantlets by Sugar (탄소급원처리에 의한 기내 더덕 식물체의 비대근 형성)

  • Kim, Ji-Ah;Moon, Heung-Kyu;Choi, Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.147-155
    • /
    • 2013
  • In this experiment, we report for the first time mass propagation by in vitro mircrotuberization of Codonopsis lanceolata. We first examined the effect of cytokinins on multiple shoot induction. 2.0 $mg{\cdot}L^{-1}$ of kinetin not only gave the highest rate of shoot induction (19.1%) but also the elongation of shoot (17.1 mm). Secondly, we investigated the effect of sugars on in vitro microtuberization from nodal segments. The diameter of tuberous roots was enlarged in the half-strength MS medium supplemented with 145.9 mM sucrose. Histological analysis revealed that the number of parenchymatous cell containing starch grains increased in the tuberous roots. In addition, unlike in non-tuberous root, vascular bundles were scattered inner cortex layer. Thirdly, in order to preserve and stimulate the germination, microtubers were stored at $4^{\circ}C$ refrigerator during 9 months and then transplanted to the artificial soils (vermiculrite : peatmoss = 1:1 v/v), resulting that the rates of survival and germination were 75% and 70%, respectively. These results indicated that mass propagation of C. lanceolata was achieved by in vitro microtuber formation, suggesting that this protocol might be applied for not only the propagation of elite clones but also conservation of C. lanceolata germplasm.