Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.6.808

A Study on Cryogenic Line Chill Down Characteristics of LNG  

BYEONGCHANG, BYEON (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials)
KYOUNG JOONG, KIM (Mechanical Engineering Department, KAIST)
SANGKWON, JEONG (Mechanical Engineering Department, KAIST)
MO SE, KIM (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials)
SANGYOON, LEE (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials)
KEUN TAE, LEE (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials)
DONGMIN, KIM (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.6, 2022 , pp. 808-818 More about this Journal
Abstract
In this research paper, we investigated the cryogenic line chill down characteristics of liquefied natural gas (LNG). A numerical analysis model was established and verified so that it can calculate the precise cooling characteristics of cryogenic fluid for the stable and safe utilization especially such as LNG and liquid hydrogen. The numerical modeling was programmed by C++ as an one-dimensional homogeneous model. The thermohydraulic cooling process was simulated using mass, momentum, energy conservation equations and appropriate heat transfer correlations. In this process, the relevant heat transfer correlations for nuclear boiling, transition boiling, film boiling, and single-phase heat transfer that can predict the experimental results were implemented. To verify the numerical modeling, several cryogenic line chill down experiments using LNG were conducted at the Korea Institute of Machinery & Materials (KIMM) LNG and Cryogenic Technology Center.
Keywords
Liquefied natural gas; Cryogenic engineering; Cryogenic line chill down; Heat transfer; Numerical analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. J. Nam and T. H. Lee, "A study on the status and competitiveness of LNG-fuelled ships as a future new marine industry", Professional management research, Vol. 20, No. 3, 2017, pp. 119. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE08793984.
2 L. Jin, J. Lee, and S. Jeong, "Investigation on heat transfer in line chill-down process with various cryogenic fluids", International Journal of Heat and Mass Transfer, Vol. 150, 2020, pp. 119204, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.119204.   DOI
3 J. Zhang, K. Wang, and L. Chen, "Experimental study on liquid oxygen chilldown in the horizontal pipe with an injector on the exit", Applied Thermal Engineering, Vol. 173, 2020, pp. 115212, doi: https://doi.org/10.1016/j.applthermaleng.2020.115212.   DOI
4 R. E. Henry, "A correlation for the minimum film boiling temperature", 1974. Retrieved from http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7530027059.
5 O. R. Burggraf, "An exact solution of the inverse problem in heat conduction theory and applications", J. Heat Transfer, Vol. 86, No. 3, 1964, pp. 373380, doi: https://doi.org/10.1115/1.3688700.   DOI
6 Z. L. Miropolskiy, "Heat transfer in film boiling of a steam-water mixture in steam-generator tubes", Teplonergetika, Vol. 10, 1963, pp. 4952. Retrieved from https://cir.nii.ac.jp/crid/1571980074368094848.
7 L. Jin, C. Park, H. Cho, C. Lee, and S. Jeong, "Experimental investigation chill-down process of cryogenic flow line", Cryogenics, Vol. 79, 2016, pp. 96105, doi: https://doi.org/10.1016/j.cryogenics.2016.08.006.   DOI
8 H. J. Ryu, H. Nam, B. W. Hwang, H. Kim, Y. Won, D. Kim, D. W. Kim, G. H. Lee, and J. I. Baek, "Basic design and sensitivity analysis of 3 MWth chemical looping combustion system for LNG combustion and steam generation", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 374387, doi: https://doi.org/10.7316/KHNES.2021.32.5.374.   DOI
9 J. C. Burke, W. R. Byrnes, A. H. Post, and F. E. Ruccia, "Pressurized cooldown of cryogenic transfer lines", Advances in Cryogenic Engineering, 1960, pp. 378394, doi: https://doi.org/10.1007/9781475705409_33.   DOI
10 J. W. H. Chi, J. M. Edmiston, and O. R. Hansen, "Effect of vertical flow at low flowrates on transient two-phase flow and boiling heat transfer", Westinghouse Electric Corp., Astronuclear Lab, 1964, doi: https://doi.org/10.2172/4254623.   DOI
11 K. Srinivasan, V. S. Rao, and M. V. K. Murthy, "Analytical and experimental investigation on cool-down of short cryogenic transfer lines", Cryogenics, Vol. 14, No. 9, 1974, pp. 489494, doi: https://doi.org/10.1016/00112275(74)901258.   DOI
12 H. Hu, J. N. Chung, and S. H. Amber, "An experimental study on flow patterns and heat transfer characteristics during cryogenic chilldown in a vertical pipe", Cryogenics, Vol. 52, No. 46, 2012, pp. 268277, doi: https://doi.org/10.1016/j.cryogenics.2012.01.033.   DOI
13 J. Hartwig, H. Hu, J. Styborski, and J. N. Chung, "Comparison of cryogenic flow boiling in liquid nitrogen and liquid hydrogen chilldown experiments", International Journal of Heat and Mass Transfer, Vol. 88, 2015, pp. 662673, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.102.   DOI
14 R. Darr, H. Hu, R. Shaeffer, J. Chung, J. W. Hartwig, and A. K. Majumdar, "Numerical simulation of the liquid nitrogen chilldown of a vertical tube", 53rd AIAA Aerospace Sciences Meeting, 2015, pp. 0468, doi: https://doi.org/10.2514/6.20150468.   DOI