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Nonlinear Transformation of Long Waves at a Bottom Step
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Abstract (1 We consider the proparation of long finite amplitude nondispersive waves over a step
bottom between two regions of finite different depths. Two dimensional motion is assumed, with
the wave crests parallel to the step, and irrotational flow in the inviscid fluid is considered. To
describe the transformation of finite amplitude waves we use the finite-amplitude shallow-water equa-
tions, the conditions of mass flow conservation and pressure continuity at the cut above the step
in Riemann’s variables. The equations define four families of curves-characteristics on which the
values of the Riemann’s invariants remain constant and a system of two nonlinear equations that
relates the amplitudes of incident, reflected and transmitted waves. The system obtained is difficult
to analyze in common form. Thus we consider some special cases having practical usage for tsunami
waves. The results obtained are compared with the long wave theory and significant nonlinear effects
are found even for quite small amplitude waves.
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1. INTRODUCTION

The problem of long wave propagation over a
bottom step is one of the most important problem
arising while calculating the passing of the sea wave
(in particular, the tsunami) over a bank or the shelf
The wave in the open ocean may have a different
character due to the conditions of its generation
and propagation. Thus if nonlinearity and disper-
sion have no time to develop, the wave form can
be described by the linear problem solution and
is similar to sinusoidal impulse (the wave form of-
ten used in tsunami calculations when the piston
model of tsunami generation is taken). In cases

when nonlinearity is of great importance, the wave
becomes stepper while propagating until the disper-
sion becomes significant; this leads to the soliton
formation when the nonlinearity and the dispersion
are of the same order. Thus different cases occur
when solving the problem of the wave passing over
a bottom step. Usually, the relative wave amplitudes
in the ocean are rather small, so it secems quite
natural to use the linear problem solution obtained
by Lamb (1932) from the conservation laws; this
solution describes the reflected and transmitted wa-
ves at the distance from the bottom step exceeding
the depths both to the left and to the right of the
step. A more detailed analysis of the problem has
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been given by Bartholomeusz (1958), he developed
the integral equation of the problem for the case
of arbitrary depths. But these equations have been
solved only in the long wave approximation and
consequently just the same reflection and transmis-
sion coefficients have been found like those obtai-
ned by Lamb. The passage of the wave from the
region of the infinite depth into the region of the
finite depth and vice versa has been discussed by
Newman (1965) in the linear approximation, calcu-
lations of the reflection and transmission coefficie-
nts and phase shifts have been carried out. The
approximate solution of the problem of the passage
of a small amplitude soliton over a bottom step
is known as well; it has been given by Pelinovsky
(1971) and Zabysky and Tappert (1971). The wave
field far from the bottom step represents a decrea-
sing amplitude soliton train. The solution has been
obtained supposing that the boundary conditions
at the step are linear. Sugimoto er al. (1987) have
received an approximate solution of the wave trans-
formation problem, they have introduced an ‘edge-
layer’ theory and have obtained the ‘reduced’
boundary conditions at the step, the nonlinearity
and dispersion appearing in different orders o(a)
and o(B"?), respectively, where a=as/h, =h%A’, and
a is the wave amplitude, A is the wave length, h
is the water depth (a~f for the soliton). Then the
propagation of a soliton (a~B<<1) over a bottom
step has been considered. The reflection and trans-
mission coefficients, that coincide with the Lamb's
results to the first order as well as the corrections
to them of the order o(f'?) leading to the appeara-
nce of linear phase shifts have been obtained. The
results received by Sugimoto e al. (1987) may serve
as a base to the approach given by Pelinovsky
(1971) and Zabysky and Tappert (1971) for the solu-
tion of the problem of soliton transformation over
a bottom step. Numerical and experimental study
of these effects has been carried out by Seabra-San-
tos et al. {1987).

In the paper presented an exact nonlinear solu-
tion of the problem of long nondispersive finite
amplitude wave transformation at a bottom step is
given. The solution obtained permits to find the
relation between the amplitudes of the surface level
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Fig. 1. The geometry of the problem: the long finite amp-
litude wave propagation-over a stepped bottom.

displacements and velocities of the reflected and
transmitted waves and those of the incident wave.
The solution obtained gives us the possibility to
define the linear approximation limits of usage.

2. BASIC FORMULATION

Let’s consider the propagation of the plane (two
dimensional) wave in the inviscid fluid which is
under the action of gravity over the bottom step
(see Fig. 1). We choose the coordinate system (X,
y) with the free surface at rest and oy is positively
upward. The fluid occupies the region 0<y<-—h,
when —o0<x<0 and 0<y<~—h; when 0<x<c0,

To describe the transformation of finite amplitude
wave we'll use the finite-amplitude shallow-water
equations that are accurate concerning the ampli-
tude, the dispersive effects being not taken into ac-
count:
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where n is the water level displacement, u is the
horizontal partical velocity, g is the accelaration of
gravity, and h(x) is the water depth:

h, when x<0

h(x):{ h> when x>0

The following conditions at the step (Lamb, 1932;
Lighthill, 1975) which represent the conditions of
mass, flow conservation and pressure continuity
have to be added to the equation (1)

(h2+n)u=(h, +mu,
w2 +gn=ui/2+gn )]
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In the linear approximation the conditions take
the form given by Lamb (1932):

h, w2=hu, =1 3)

In the calculations below we use the Riemann
variables:

L.=u+ 2[/gh+n)—+/gh) @

where i=1 for x<0 and i=2 for x>0. Now we shall
rewrite both the equations (1) and the conditions
(2) at the step using the new variables (4). Then
the equations (1) and the conditions (2) at the step
take the following forms:
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The equation (5) defines four families of curves

c,,i=% gh[-f-% IT,+%II,-

on the (x, t) plane, the qualitative behaviour of
which being shown by solid lines in Fig.2 for the
case of positive impulse propagation (the dotted li-
nes indicate the characteristies of linear problem).
The dashed region shows the area where the intera-
ction between the incident and reflected wave takes
place near the step. As it follows from (5), the va-
lues of the invariant remain constant on the chara-
cteristics, thus the wave interaction leads only to
the appearance of the additional delays for the wave
with definite value of Riemann invariant. Qutside
the interaction area the waves are separate and the
values of Riemann invariants for the incident, tran-
smitted and reflected waves are determined by the
following formulae:
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Fig. 2. Qualitative behaviour of characeristics for the pro-
blem of finite amplitude wave propagation over a
bottom step.
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where Ny, Nes N are the surface level displacements
in the incident, reflected and transmitted waves cor-
respondingly.

The system of nonlinear equations that determi-
nes the relation between surface level displacements
in the incident, transmitted and reflected waves fol-
lows from the condition of invariant value conser-
vation on the characteristics (5) and boundary con-
dition (6):

GAM—NYM+N+1P=PP+1y
q[3M2+N)—2MN+2(N+M)]=3P>+2P  (8)

where q=hy/h; is the depth ratio and the following
designations are introduced:
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The system (8) obtained is difficult to analyze
in common form. Let’s consider some special cases
that have practical usage for tsunami waves.

3. The analysis of the solutions

3.1 The case of small amplitude waves

First of all we shall investigate the case of small
surface level displacement in the transmitted wave,
when 1,/h,, <1 and consequently 1;,./h;<<1, n.7/h,
<1 as well. In the first approximation Lamb’s for-
mulae for the reflection R and transmission T coef-
ficients follow from the system (8):

_ Va-! _2/4
R= Vet T‘\/EH @

In the second approximation the additions p and
v to the linear formulae are obtained:

MNres =R Nine <1+£ Ninc )

h h R h,
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To estimate how large the corrections obtained
are the dependences of the relative additions to the
‘linear’ formulae
&( TNinc )Rl_ H d ﬂ( Nine )Nl_ vV

R\h/ R™ TUn /7T

according to (10) on the relative depth ratio Ah/h=
(hi—hy)/hy=1—1/q are given in Fig. 3. As seen from
the Fig, the nonlinearity can bring to some increase
of the reflected wave amplitude when the depth ra-
tio Ah/h<04, but when Ah/h>04, the addition
AR/R is negative and leads to the decrease of the
refiected wave amplitude. Naturally, when Ah/h=0
and the step vanishes, AR and R vanishes as well.
The addition to the transmission coefficient is al-
ways negative. When Ah/h—1 (ie. h,~0). AR and
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Fig. 3. Relative corrections to the reflection AR/R(n,/h) !
=wR and transmission AT/T(n,/h))"'=v/T coef-
ficients versus the depth ratio Ah/h.

AT increase unlimitedly. This situation will be dis-
cussed below (in 3.2.). Fig. 4 shows the dependence
of nonlinear additions to the transmission AT/T(a)
and reflection AR/R(b) coefficients on the depth
ratio Ah/h and the incident wave amplitude. From
the Figs one can see that for small depth ratios
the nonlinear additions are small in wide limits of
the relative incident wave amplitudes, at the same
time for large depth ratios the nonlinear addition
is sufficient even for small relative amplitudes of
the incident wave. Hence in the last case the situs-
tion of ‘weak’ nonlinearity discussed above beco-
mes insufficient as the condition n,/h,<<1 breaks.

3.2 The case of considerable depth ratios

In the case of considerable depth ratios an app-
ropriate model for describing the wave transforma-
tion is the other limit of (6) when the incident and
reflected waves are linear (ie. the surface level disp-
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Fig. 4. The dependences of nonlinear corrections to the
transmission coefficient AT/T (a) and reflection
coefficienit AR/R (b) on the depth ratio Ah/h and
incident wave amplitude Mi/h.

lacements are small enough) but the relative ampli-
tude of the transmitted wave n,/h, can’t be conside-
red to be small. In that case we obtain from (8)

rlre/ _ nmz‘ _ 2P(P + 1 )
h\ h\ qS/Z
Nine P(P+1) P(3P+2)
= +
h] q3/2 2q (1 1)

where P=y/1+n,/h>—1. Fig.5 shows the solution
of the system (11), ie. the dependence of reflected
and transmitted wave amplitudes on the incident
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Fig. 5. Relative amplitudes of reflected n,¢/hy and transmi-
tted n./h, waves versus the relative amplitude of
incident wave corresponding to formula (11).

wave amplitude for three values of depth ratios q=
10, 100, 10000. In the limit case, when n,/h;—>c0,
(but so that n/h;<<1, ie. ¢>>Mm,/h)7") it is easy
to obtain from (11):

inc inc tr ¥
e 3 _YL_H,[(L) Z]
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As it follows from (12), the amplitude of the trans-
mitted wave is 2/3 of the incident wave amplitude
(in contrast to the linear approximation solution
when /M =T=2 as h,—~0). This limit coincides
with the situation q=10000 shown in Fig.5. But
it should be taken into account that in the limit
h,—~0 the wave breaks immediately at the step and
so the case discussed gives the upper limit estima-
tion of the solution of the problem.

3.3 Applicability condition of the results obtained

From the theory developed one manages to find
the condition of its applicability. While the wave
amplitude increases, the distance at which the wave
becomes stepper decreases (in the frames of our
nondispersive theory). That is why when the wave
amplitude is high and the distance the wave travels
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from the source is large, the shock wave will app-
roach the step. This effect, generally speaking, is
not connected with the bottom step and is determi-
ned only by the wave evolution during its propaga-
tion. There is, however, an other effect, that is com-
pletely determined by the presence of the bottom
step. This effect is concerned with the interaction
of the incident and reflected waves. Indeed, the ref-
lected wave travels near the step in the field of the
incident wave and if the last one is quite intensive,
then the reflected wave will not be able to move
out of the step and will break. Taking into account
the definition of the characteristics we get the con-
dition of the reflected wave existence:

=—Veh+

(it is enough to consider the characteristic 1_,=0
that corresponds to the beginning of the reflection).
Thus using (4) the condition of the solution smoo-
thness is obtained in the following form:

I+1<0 (13)

T],,,(S3h| (14)

In contrast, if Nu.>3h;, the wave is surely to
break. When the inequality (14) takes place and
a smooth wave approaches the step, then it will
not break during its transformation over the step
(but it may break at some distance away from the
step as soon as the nonlinear effects accumulate).

3.4 Particle flux velocity determination

The particle velocities in the incident, reflected
and transmitted fluxes are easily obtained from (7)
and the definition of the corresponding invariants.

= 2y/g [ V1 i —1]
U= —2 \/—1[ A+ Tlref 1]
u,=—2y/gh: [\/ﬁ— 1]

In the case of weak nonlinearity from these rela-
tions we have:
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Fig. 6. The nonlinear reflected flow velocity correction ver-
sus depth ratio.
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As it follows from (16) the linear effects taken

into account lead to the decrease of the transmitted
flux velocity (as v is always negative) in comparison
with the results of the linear theory. The nonlinear
addition to the particle velocity of the reflected wave
Au,/ghi(my/h)’=R¥4—y is shown in Fig.6. As
seen, the nonlinearity leads to a small increase in
the reflected wave flux velocity, when Ah/h<0.35,
but for Ah/h>0.35 the reflected flux velocity in no-
nlinear approximation is smaller than that of the
linear approximation.

3.5 The application of results

Now let’s discuss to which extent the results ob-
tained as well as the existing solutions for long wa-
ves and small amplitude solitons can be applied
to the tsunami waves. The relative wave amplitudes
of the tsunami generated by the underwater earth-
quakes in the open ocean are small enough (n/h<
0.02 see Mirchina and Pelinovsky, 1984; Mirchins
and Pelinovsky, 1982; Mirchina, Selinovsky and
Shavratsky, 1982). If the distance the wave travels
before shoaling L is shorter than the characteristic
length, the wave has no time to change its form
before it runs up the step (see 3.3). The wave form
remains similar to the sinusoidal impulse form. The
results of the investigation carried out above allow
to answer the question whether the finiteness of the
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wave amplitude influences the value of the reflected
wave and, what is much more important, the trans-
mitted wave amplitudes. As seen from Fig 4, for
the step heights Ah/h<0.85 the estimation of the
transmitted wave by the help of linear formula leads
to an error that doesnt exceed 10%. That is why
the linear Lamb’s theory may be considered to be
of good accuracy when describing such situations.
Hence there are some cases when the linear estima-
tions give significant errors. For example, for 1964
tsunami generated by underwater earthquake in the
vicinity of Alaska, n,/h;~ 0.1, and the difference
from the linear formulae becomes significant (see
Fig.4), when Ah/h>06. But there exists an other
possibility when the tsunami wave reaches the USA
coast where Ah/h approaches unity (i.e. g>>1). The
second case considered above (formula (11), Fig. 5)
is a proper model for describing such situation. He-
nce it should be emphasized that the wave must
break in this case.

4. CONCLUDING REMARKS

We have obtained theoretical values of the reflec-
tion and transmission coefficients associated with
the propagation of finite amplitude long waves over
a step-shaped bottom. In the limit of small ampli-
tude waves those results are consistent with the long
wave theory of Lamb (1932) and hence, the linear
nondispersive limit of the Bartholomeusz's (1958)
theory. However, it is clear from our results that
there are some cases when the long-wave limit is
insufficient for describing the propagation of ocean
waves in the shelf zone, because of the fact that
the nonlinear corrections to the reflection and tran-
smission coefficients may become significant for ab-

rupt bottom changes and they should be taken into
account when estimating the amplitudes of reflected
and transmitted waves. Thus we may expect that
even for relatively small amplitude ocean waves, the
nonlinear effects will be important.
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