DOI QR코드

DOI QR Code

Effects of weather change, human disturbance and interspecific competition on life-history and migration of wintering Red-crowned cranes

기후변화와 인간의 방해 및 종간경쟁이 두루미 월동생태와 이동에 미치는 영향

  • Hong, Mi-Jin (Dept. of Biology and Korean Institute of Ornithology, Kyung Hee Univ.) ;
  • Lee, Who-Seung (Center for Stock Assessment Research, Univ. of California Santa Cruz) ;
  • Yoo, Jeong-Chil (Dept. of Biology and Korean Institute of Ornithology, Kyung Hee Univ.)
  • 홍미진 (경희대학교 생물학과 및 한국조류연구소) ;
  • 이후승 (미국 캘리포니아대학교 자원평가연구센터) ;
  • 유정칠 (경희대학교 생물학과 및 한국조류연구소)
  • Received : 2015.05.22
  • Accepted : 2015.08.26
  • Published : 2015.10.30

Abstract

It is well documented that physiological and nutritional condition of wintering birds is strongly related to migration success to breeding sites, and also breeding success. However, how abiotic factors during winter affect the migration and breeding successes still remains unclear. Thus, this study developed a dynamic-state-dependent model for wintering life-history to identify the potential impact on the life-history, success to breeding site and breeding success of wintering birds, which are related to temperature fluctuation, interspecific competition and human disturbance at the wintering sites. To find the best-fit-model, we referred to the existing research data on wintering ecology of Red-crowned cranes (Grus japonensis) in Cheolwon, Korea, which is well documented as a long-term wintering study. Our model predicted that the higher temperature fluctuation and a higher rate of human disturbance are negatively related to migration success to breeding sites and their fitness, ultimately breeding success via changing of proportion in resource allocation (for e. g., lower energy compensation or higher level of stress accumulation). Particularly, the rate of body mass compensation after arrival at wintering sites may be accelerated when there are less temperature fluctuations and a lower rate of human disturbance. In addition, the rate of interspecific competition sharing the wintering foraging sites is negatively related to the rate of body mass compensation. Consequently, we discussed the conservation strategies of wintering birds based on the outcomes of the model.

월동기간 동안 월동조류의 생리 및 영양학적 상태는 이후 번식지로의 이동성공과 번식성공에 영향을 줄 수 있음은 잘 알려져 있다. 그러나 환경적 요인들이 월동기간 동안 어떻게 몸 상태에 영향을 주어 장기적으로 이동과 번식에 영향을 주는지에 대해서는 아직까지 잘 알려져 있지 않다. 본 연구는 월동기간 동안 온도변화와 월동지에서의 인간 활동에 따른 방해가 개체수준에서의 월동하는 조류의 생활사에 미치는 영향과 번식지로의 이동 및 잠재적 번식 성공에 미치는 영향을 알아보기 위해 동적상태의존 월동 생활사 모델을 개발하였다. 모델에 사용된 지수는 월동개체군에 대한 연구가 잘 수행되어 있는 철원의 두루미 자료를 이용하였다. 모델은 온도 변화나 인간의 방해요인의 영향이 생존과 번식지로의 이동을 위한 에너지 축적 그리고 누적된 스트레스의 감소를 위한 자원 분배에 영향을 주는 것으로 예측하였다. 특히 월동지에 도래한 두루미 몸무게의 회복률은 기온변화가 적고 방해요인의 영향이 낮을수록 빨랐으며, 체내의 누적 스트레스는 기온변화가 크고 방해요인의 영향이 높을수록 회복속도가 낮을 것으로 예측되었다. 또한 월동지의 취식지를 공유하는 다른 종의 밀도가 높을수록 두루미의 몸무게 회복률이 낮은 것으로 예측되었다. 끝으로 모델의 예측된 결과를 통해 월동지에서의 월동조류 보전전략에 대해 고찰하였다.

Keywords

References

  1. Atkinson, P. W., R. J. Fuller, J. A. Vickery, G. J. Conway, J. R. B. Tallowin, R. E. N. Smith, K. A. Haysom, T. C. Ings, E. J. Asteraki, and V. K. Brown (2005) Influence of agricultural management, sward structure and food resources on grassland field use by birds in lowland England. J. Appl. Ecol. 42:932-942. https://doi.org/10.1111/j.1365-2664.2005.01070.x
  2. Bian, J.-h., Y. Wu, L. L. Getz, Y.-F. Cao, F. Chen, and L. Yang (2011) Does maternal stress influence winter survival of offspring in root voles Microtus oeconomus? A field experiment. Oikos 120:47-56. https://doi.org/10.1111/j.1600-0706.2010.18165.x
  3. Borras, A., J. C. Senar, F. Alba-Sanchez, J. A. Lopez-Saez, J. Cabrera, X. Colome, and T. Cabrera (2010) Citril finches during the winter: patterns of distribution, the role of pines and implications for the conservation of the species. Anim. Biodivers. Conserv. 33:89-115.
  4. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West (2004) Toward a metabolic theory of ecology. Ecology 85:1771-1789. https://doi.org/10.1890/03-9000
  5. Clark, C. W., and M. Mangel (2000) Dynamic state variable models in ecology: methods and applications. Oxford University Press, Oxford. 304 pages.
  6. Clark, J. S., D. M. Bell, M. Kwit, A. Stine, B. Vierra, and K. Zhu (2012) Individual-scale inference to anticipate climate-change vulnerability of biodiversity. Phil. Trans. R. Soc. B 367:236-246. https://doi.org/10.1098/rstb.2011.0183
  7. Cresswell, W., J. A. Clark, and R. Macleod (2009) How climate change might influence the starvation-predation risk trade-off response. Proc. R. Soc. B 276:3553-3560. https://doi.org/10.1098/rspb.2009.1000
  8. Fernandez-Juricic, E., and J. L. Telleria (2000) Effects of human disturbance on spatial and temporal feeding patterns of Blackbird Turdus merula in urban parks in Madrid, Spain. Bird Study 47:13-21. https://doi.org/10.1080/00063650009461156
  9. Fuller, R. J. (2000) Relationships between recent changes in lowland British agriculture and farmland bird populations: an overview. Ecology and Conservation of Lowland Farmland Birds - Proceedings of the 1999 BOU Spring Conference. pp5-16.
  10. Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov (2001) Effects of size and temperature on metabolic rate. Science 293:2248-2251. https://doi.org/10.1126/science.1061967
  11. Gosscustard, J. D., R. T. Clarke, S. E. A. L. D. Durell, R. W. G. Caldow, and B. J. Ens (1995) Population consequences of winter habitat loss in a migratory shorebird. II. Model predictions. J. Appl. Ecol. 32:337-351. https://doi.org/10.2307/2405100
  12. Grubb, T. C. (1975) Weather-dependent foraging behavior of some birds wintering in a deciduous woodland. Condor 77:175-182. https://doi.org/10.2307/1365788
  13. Guerrero, I., M. B. Morales, J. J. Onate, F. Geigerb, F. Berendseb, G. de Snoob, S. Eggersc, T. Partc, J. Bengtssonc, L. W. Clementd, W. W. Weisserd, A. Olszewskie, P. Ceryngierf, V. Hawrof, J. Liirag, T. Aavikg, C. Fischerh, A. Flohreh, C. Thiesh, and T. Tscharntkeh (2012) Response of ground-nesting farmland birds to agricultural intensification across Europe: Landscape and field level management factors. Bio. Conserv. 152:74-80. https://doi.org/10.1016/j.biocon.2012.04.001
  14. Hilborn, R., and M. Mangel (1997) The ecological detective: confronting models with data. Princeton University Press, Princeton, NJ.
  15. Iverson, S. A., and D. Esler (2006) Site fidelity and the demographic implications of winter movements by a migratory bird, the harlequin duck Histrionicus histrionicus. J. Avian Biol. 37:219-228. https://doi.org/10.1111/j.2006.0908-8857.03616.x
  16. Jacobs, S. R., K. H. Elliott, and A. J. Gaston (2013) Parents are a drag: long-lived birds share the cost of increased foraging effort with their offspring, but males pass on more of the costs than females. PLoS One 8:e54594. https://doi.org/10.1371/journal.pone.0054594
  17. Jokimaki, J., P. Clergeau, and M. L. Kaisanlahti-Jokimaki (2002) Winter bird communities in urban habitats: a comparative study between central and northern Europe. J. Biogeogr. 29:69-79. https://doi.org/10.1046/j.1365-2699.2002.00649.x
  18. Jokimaki, J., and J. Suhonen (1998) Distribution and habitat selection of wintering birds in urban environments. Landscape and Urban Planning 39:253-263. https://doi.org/10.1016/S0169-2046(97)00089-3
  19. Keith, D. A., H. R. Akcakaya, W. Thuiller, G. F. Midgley, R. G. Pearson, S. J. Phillips, H. M. Regan, M. B. Araujo, and T. G. Rebelo (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol. Lett. 4:560-563. https://doi.org/10.1098/rsbl.2008.0049
  20. Klein, M. L., S. R. Humphrey, and H. F. Percival (1995) Effect of ecotourism on distribution of waterbirds in a wildlife refuge. Conser. Biol. 9:1454-1465. https://doi.org/10.1046/j.1523-1739.1995.09061454.x
  21. Lee, W.-S. (2012) Effect of environmental stressors in stopover sites on the survival and re-migration using a dynamic-state-dependent model. Kor. J. Ornith. 19:277-291.
  22. Lee, W.-S., N. B. Metcalfe, P. Monaghan, and M. Mangel (2011) A comparison of dynamic-state-dependent models of the trade-off between growth, damage, and reproduction. Am. Nat. 178:774-786. https://doi.org/10.1086/662671
  23. Lee, W. S., C. H. Kim, S. J. Rhim (2000) Study on migratory birds and their habitat protection and management measures. Ministry of Environment. Seoul (in Korean)
  24. Lee, W. S., S. J. Rhim and C. R. Park (2001) Habitat use of cranes in Cheolwon basin, Korea. Kor. J. Ecol. 24:77-80
  25. Mangel, M. (1990) A dynamic habitat selection game. Math. Biosci. 100:241-248. https://doi.org/10.1016/0025-5564(90)90041-V
  26. Mangel, M. (2006) The theoretical biologist's toolbox: quan-titative methods for ecology and evolutionary biology. Cambridge University Press, Cambridge, UK. 390 pages.
  27. Mangel, M., and C. W. Clark (1988) Dynamic modeling in behavioral ecology. Princeton University Press, New York. 320 pages.
  28. Mangel, M., and S. B. Munch (2005) A life-history perspective on short-and long-term consequences of compensatory growth. Am. Nat. 166:E155-E176. https://doi.org/10.1086/444439
  29. Martin, C. (1987) Habitat selection in birds. Academic Press, London. 558 pages.
  30. Masse, A., and S. D. Cote (2012) Linking alternative food sources to winter habitat selection of herbivores in overbrowsed landscapes. J. Wildl. Manage. 76:544-556. https://doi.org/10.1002/jwmg.306
  31. Matheworks, T. (2012) Matlab 2012b. Matheworks, Natick, MA.
  32. Microsoft (2010) Microsoft Visual Basic 2010. Microsoft Cooperation, Redmond, WA.
  33. Miller, M. R., and G. D. Wylie (1995) Sidebar: residual rice seed is critical food for waterfowl. Cal. Agric. 49:61. https://doi.org/10.3733/ca.v049n06p61
  34. Morris, D. (2003) Toward an ecological synthesis: a case for habitat selection. Oecologia 136:1-13. https://doi.org/10.1007/s00442-003-1241-4
  35. Munch, S. B., and M. Mangel (2006) Evaluation of mortality trajectories in evolutionary biodemography. Proc. Nat. Acad. Sci. 103:16604-16607. https://doi.org/10.1073/pnas.0601735103
  36. NIBR (2013) Winter Bird Census of 2013. National Institute of Biological Resources, Ministry of Environment, Incheon (in Korean)
  37. Newton, I. (2008) The migration ecology of birds. Academic Press, London. 984 pages.
  38. Orioli, R. V., D. Massimino, and L. Bani (2011) Identification of putative wintering areas and ecological determinants of population dynamics of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) breeding in northern Italy. Avian Conserv. Ecol. 6:3.
  39. Pae, S. H. (2000) A study on habitat use of wintering cranes in DMZ, Korea-with carrying capacity and spatial distribution analysis using GIS. M. Sc. Thesis, Kyung Hee University. 77pp. (in Korean with English abstract)
  40. Pae, S. H., Kaliher Frances, J. B. Lee, P. O. Won, and J. C. Yoo (1996) Current status of wintering cranes in Korea. Bul. Kor. Insti. Ornith. 5:13-20.
  41. Pae, S. H. (1994) Wintering ecology of Red-crowned Crane Grus japonensis and White-naped Crane Grus vipio in Cholwon basin, Korea. M. Sc. Thesis, Kyung Hee University. 43pp.
  42. Paprocki, N., J. A. Heath, and S. J. Novak (2014) Regional distribution shifts help explain local changes in wintering raptor abundance: implications for interpreting population trends. PLoS One 9:e86814. https://doi.org/10.1371/journal.pone.0086814
  43. Power, G., and J. Mitchell (1994) The influence of river ice on birds and mammals. in Proceedings of the Workshop on Environmental Aspects of River Ice, Saskatoon, Sask. National Hydrology Research Institute, Saskatoon, Sask.
  44. Robb, G. N., R. A. McDonald, D. E. Chamberlain, S. J. Reynolds, T. J. E. Harrison, and S. Bearhop (2008) Winter feeding of birds increases productivity in the subsequent breeding season. Bio. Lett. 4:220-223. https://doi.org/10.1098/rsbl.2007.0622
  45. Sherry, T. W., and R. T. Holmes (2000) Demographic modeling of migratory bird populations: the importance of parameter estimation using marked individuals. Pages 211-219 in R. Bonney, D. N. Pashley, R. J. Cooper, and L. Niles, editors. Strategies for bird conservation: the partners in flight planning process. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
  46. Sillett, S. T., R. B. Chandler, J. A. Royle, M. Kery, and S. A. Morrison (2012) Hierarchical distance-sampling models to estimate population size and habitat-specific abundance of an island endemic. Ecol. Appli. 22:1997-2005. https://doi.org/10.1890/11-1400.1
  47. Smith, P. G. R (2007) Characteristics of urban natural areas influencing winter bird use in southern Ontario, Canada. Env. Manage. 39:338-352. https://doi.org/10.1007/s00267-005-0028-2
  48. Song, I. H. (2000) The ecology and current status of Red-crowned cranes and White-naped cranes in Cholwon basin area. M. Sc. Thesis, Korea National University of Education. 41pp. (in Korean with English abstract)
  49. Soutiere, E. C., H. S. Myrick, and E. G. Blolen (1972) Chronology and behavior of American widgeon wintering in Texas. J. Wildl. Manage. 26:752-758.
  50. Swanson, D. L (2010) Seasonal metabolic variation in birds: functional and mechanistic correlates. Curr. Ornithol. 17:75-129.
  51. Taylor, C. M., D. B. Lank, A. C. Pomeroy, and R. C. Ydenberg (2007) Relationship between stopover site choice of migrating sandpipers, their population status, and environmental stressors. Isr. J. Ecol. Evol. 53:245-261. https://doi.org/10.1560/IJEE.53.3.245
  52. Tucker, G. M. (1992) Effects of agricultural practices on field use by invertebrate-feeding birds in winter. J. Appli. Ecol. 29:779-790. https://doi.org/10.2307/2404488
  53. West, G. B., J. H. Brown, and B. J. Enquist (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122-126. https://doi.org/10.1126/science.276.5309.122
  54. Wilson, W. H. (1994) The distribution of wintering birds in central Maine-the interactive effects of landscape and bird feeders. J. Field Ornith. 65:512-519.
  55. Yoo, S.-H., K.-S. Lee, J.-H. Hur, W.-H. Hur, and C. H. Park (2012) The change trend of wintering habitat use of cranes in Cheorwon, Korea: wintering periods from 2002 to 2012. Kor. J. Ornith. 19:115-125.
  56. Yoo, S.-H., K.-S. Lee, I.-K. Kim, T.-H. Kang, and H.-S. Lee (2009) Research on the size, formation and tendency to evade the road of the feeding flocks of crane species. Kor. J. Environ. Ecol. 23:41-49.
  57. Yoo, S.-H., K.-S. Lee, and C. H. Park (2013) MCP, kernal density estimation and LoCoH analysis for the core area zoning of the red-crowned crane's feeding habitat in Cheorwon, Korea. Kor. J. Environ. Ecol. 27:11-21.
  58. Yoon, T. H. (2000) Some factors affecting population fluctuation of wintering White-naped and Red-crowned cranes in Cholwon Basin. Ph.D. Thesis, Kyung Hee University. 51pp. (in Korean with English abstract)
  59. Zuckerberg, B., D. N. Bonter, W. M. Hochachka, W. D. Koenig, A. T. DeGaetano, and J. L. Dickinson (2011) Climatic constraints on wintering bird distributions are modified by urbanization and weather. J. Ani. Ecol. 80:403-413. https://doi.org/10.1111/j.1365-2656.2010.01780.x