Browse > Article
http://dx.doi.org/10.13047/KJEE.2015.29.5.681

Effects of weather change, human disturbance and interspecific competition on life-history and migration of wintering Red-crowned cranes  

Hong, Mi-Jin (Dept. of Biology and Korean Institute of Ornithology, Kyung Hee Univ.)
Lee, Who-Seung (Center for Stock Assessment Research, Univ. of California Santa Cruz)
Yoo, Jeong-Chil (Dept. of Biology and Korean Institute of Ornithology, Kyung Hee Univ.)
Publication Information
Korean Journal of Environment and Ecology / v.29, no.5, 2015 , pp. 681-692 More about this Journal
Abstract
It is well documented that physiological and nutritional condition of wintering birds is strongly related to migration success to breeding sites, and also breeding success. However, how abiotic factors during winter affect the migration and breeding successes still remains unclear. Thus, this study developed a dynamic-state-dependent model for wintering life-history to identify the potential impact on the life-history, success to breeding site and breeding success of wintering birds, which are related to temperature fluctuation, interspecific competition and human disturbance at the wintering sites. To find the best-fit-model, we referred to the existing research data on wintering ecology of Red-crowned cranes (Grus japonensis) in Cheolwon, Korea, which is well documented as a long-term wintering study. Our model predicted that the higher temperature fluctuation and a higher rate of human disturbance are negatively related to migration success to breeding sites and their fitness, ultimately breeding success via changing of proportion in resource allocation (for e. g., lower energy compensation or higher level of stress accumulation). Particularly, the rate of body mass compensation after arrival at wintering sites may be accelerated when there are less temperature fluctuations and a lower rate of human disturbance. In addition, the rate of interspecific competition sharing the wintering foraging sites is negatively related to the rate of body mass compensation. Consequently, we discussed the conservation strategies of wintering birds based on the outcomes of the model.
Keywords
WINTERING; FORAGING ACTIVITY; DYNAMIC-STATE-DEPENDENT MODEL; DECISION MAKING; TRADE-OFF;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gosscustard, J. D., R. T. Clarke, S. E. A. L. D. Durell, R. W. G. Caldow, and B. J. Ens (1995) Population consequences of winter habitat loss in a migratory shorebird. II. Model predictions. J. Appl. Ecol. 32:337-351.   DOI
2 Grubb, T. C. (1975) Weather-dependent foraging behavior of some birds wintering in a deciduous woodland. Condor 77:175-182.   DOI
3 Guerrero, I., M. B. Morales, J. J. Onate, F. Geigerb, F. Berendseb, G. de Snoob, S. Eggersc, T. Partc, J. Bengtssonc, L. W. Clementd, W. W. Weisserd, A. Olszewskie, P. Ceryngierf, V. Hawrof, J. Liirag, T. Aavikg, C. Fischerh, A. Flohreh, C. Thiesh, and T. Tscharntkeh (2012) Response of ground-nesting farmland birds to agricultural intensification across Europe: Landscape and field level management factors. Bio. Conserv. 152:74-80.   DOI
4 Hilborn, R., and M. Mangel (1997) The ecological detective: confronting models with data. Princeton University Press, Princeton, NJ.
5 Iverson, S. A., and D. Esler (2006) Site fidelity and the demographic implications of winter movements by a migratory bird, the harlequin duck Histrionicus histrionicus. J. Avian Biol. 37:219-228.   DOI
6 Jacobs, S. R., K. H. Elliott, and A. J. Gaston (2013) Parents are a drag: long-lived birds share the cost of increased foraging effort with their offspring, but males pass on more of the costs than females. PLoS One 8:e54594.   DOI
7 Jokimaki, J., P. Clergeau, and M. L. Kaisanlahti-Jokimaki (2002) Winter bird communities in urban habitats: a comparative study between central and northern Europe. J. Biogeogr. 29:69-79.   DOI
8 Jokimaki, J., and J. Suhonen (1998) Distribution and habitat selection of wintering birds in urban environments. Landscape and Urban Planning 39:253-263.   DOI
9 Keith, D. A., H. R. Akcakaya, W. Thuiller, G. F. Midgley, R. G. Pearson, S. J. Phillips, H. M. Regan, M. B. Araujo, and T. G. Rebelo (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol. Lett. 4:560-563.   DOI
10 Klein, M. L., S. R. Humphrey, and H. F. Percival (1995) Effect of ecotourism on distribution of waterbirds in a wildlife refuge. Conser. Biol. 9:1454-1465.   DOI
11 Lee, W.-S. (2012) Effect of environmental stressors in stopover sites on the survival and re-migration using a dynamic-state-dependent model. Kor. J. Ornith. 19:277-291.
12 Lee, W.-S., N. B. Metcalfe, P. Monaghan, and M. Mangel (2011) A comparison of dynamic-state-dependent models of the trade-off between growth, damage, and reproduction. Am. Nat. 178:774-786.   DOI
13 Lee, W. S., C. H. Kim, S. J. Rhim (2000) Study on migratory birds and their habitat protection and management measures. Ministry of Environment. Seoul (in Korean)
14 Lee, W. S., S. J. Rhim and C. R. Park (2001) Habitat use of cranes in Cheolwon basin, Korea. Kor. J. Ecol. 24:77-80
15 Mangel, M. (1990) A dynamic habitat selection game. Math. Biosci. 100:241-248.   DOI
16 Mangel, M. (2006) The theoretical biologist's toolbox: quan-titative methods for ecology and evolutionary biology. Cambridge University Press, Cambridge, UK. 390 pages.
17 Mangel, M., and C. W. Clark (1988) Dynamic modeling in behavioral ecology. Princeton University Press, New York. 320 pages.
18 Masse, A., and S. D. Cote (2012) Linking alternative food sources to winter habitat selection of herbivores in overbrowsed landscapes. J. Wildl. Manage. 76:544-556.   DOI
19 Mangel, M., and S. B. Munch (2005) A life-history perspective on short-and long-term consequences of compensatory growth. Am. Nat. 166:E155-E176.   DOI
20 Martin, C. (1987) Habitat selection in birds. Academic Press, London. 558 pages.
21 Matheworks, T. (2012) Matlab 2012b. Matheworks, Natick, MA.
22 Microsoft (2010) Microsoft Visual Basic 2010. Microsoft Cooperation, Redmond, WA.
23 Miller, M. R., and G. D. Wylie (1995) Sidebar: residual rice seed is critical food for waterfowl. Cal. Agric. 49:61.   DOI
24 Morris, D. (2003) Toward an ecological synthesis: a case for habitat selection. Oecologia 136:1-13.   DOI
25 Munch, S. B., and M. Mangel (2006) Evaluation of mortality trajectories in evolutionary biodemography. Proc. Nat. Acad. Sci. 103:16604-16607.   DOI
26 NIBR (2013) Winter Bird Census of 2013. National Institute of Biological Resources, Ministry of Environment, Incheon (in Korean)
27 Newton, I. (2008) The migration ecology of birds. Academic Press, London. 984 pages.
28 Orioli, R. V., D. Massimino, and L. Bani (2011) Identification of putative wintering areas and ecological determinants of population dynamics of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) breeding in northern Italy. Avian Conserv. Ecol. 6:3.
29 Pae, S. H., Kaliher Frances, J. B. Lee, P. O. Won, and J. C. Yoo (1996) Current status of wintering cranes in Korea. Bul. Kor. Insti. Ornith. 5:13-20.
30 Pae, S. H. (2000) A study on habitat use of wintering cranes in DMZ, Korea-with carrying capacity and spatial distribution analysis using GIS. M. Sc. Thesis, Kyung Hee University. 77pp. (in Korean with English abstract)
31 Pae, S. H. (1994) Wintering ecology of Red-crowned Crane Grus japonensis and White-naped Crane Grus vipio in Cholwon basin, Korea. M. Sc. Thesis, Kyung Hee University. 43pp.
32 Paprocki, N., J. A. Heath, and S. J. Novak (2014) Regional distribution shifts help explain local changes in wintering raptor abundance: implications for interpreting population trends. PLoS One 9:e86814.   DOI
33 Power, G., and J. Mitchell (1994) The influence of river ice on birds and mammals. in Proceedings of the Workshop on Environmental Aspects of River Ice, Saskatoon, Sask. National Hydrology Research Institute, Saskatoon, Sask.
34 Robb, G. N., R. A. McDonald, D. E. Chamberlain, S. J. Reynolds, T. J. E. Harrison, and S. Bearhop (2008) Winter feeding of birds increases productivity in the subsequent breeding season. Bio. Lett. 4:220-223.   DOI
35 Sherry, T. W., and R. T. Holmes (2000) Demographic modeling of migratory bird populations: the importance of parameter estimation using marked individuals. Pages 211-219 in R. Bonney, D. N. Pashley, R. J. Cooper, and L. Niles, editors. Strategies for bird conservation: the partners in flight planning process. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
36 Sillett, S. T., R. B. Chandler, J. A. Royle, M. Kery, and S. A. Morrison (2012) Hierarchical distance-sampling models to estimate population size and habitat-specific abundance of an island endemic. Ecol. Appli. 22:1997-2005.   DOI
37 Swanson, D. L (2010) Seasonal metabolic variation in birds: functional and mechanistic correlates. Curr. Ornithol. 17:75-129.
38 Smith, P. G. R (2007) Characteristics of urban natural areas influencing winter bird use in southern Ontario, Canada. Env. Manage. 39:338-352.   DOI
39 Song, I. H. (2000) The ecology and current status of Red-crowned cranes and White-naped cranes in Cholwon basin area. M. Sc. Thesis, Korea National University of Education. 41pp. (in Korean with English abstract)
40 Soutiere, E. C., H. S. Myrick, and E. G. Blolen (1972) Chronology and behavior of American widgeon wintering in Texas. J. Wildl. Manage. 26:752-758.
41 Taylor, C. M., D. B. Lank, A. C. Pomeroy, and R. C. Ydenberg (2007) Relationship between stopover site choice of migrating sandpipers, their population status, and environmental stressors. Isr. J. Ecol. Evol. 53:245-261.   DOI
42 Tucker, G. M. (1992) Effects of agricultural practices on field use by invertebrate-feeding birds in winter. J. Appli. Ecol. 29:779-790.   DOI
43 West, G. B., J. H. Brown, and B. J. Enquist (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122-126.   DOI
44 Wilson, W. H. (1994) The distribution of wintering birds in central Maine-the interactive effects of landscape and bird feeders. J. Field Ornith. 65:512-519.
45 Yoo, S.-H., K.-S. Lee, J.-H. Hur, W.-H. Hur, and C. H. Park (2012) The change trend of wintering habitat use of cranes in Cheorwon, Korea: wintering periods from 2002 to 2012. Kor. J. Ornith. 19:115-125.
46 Zuckerberg, B., D. N. Bonter, W. M. Hochachka, W. D. Koenig, A. T. DeGaetano, and J. L. Dickinson (2011) Climatic constraints on wintering bird distributions are modified by urbanization and weather. J. Ani. Ecol. 80:403-413.   DOI
47 Yoo, S.-H., K.-S. Lee, I.-K. Kim, T.-H. Kang, and H.-S. Lee (2009) Research on the size, formation and tendency to evade the road of the feeding flocks of crane species. Kor. J. Environ. Ecol. 23:41-49.
48 Yoo, S.-H., K.-S. Lee, and C. H. Park (2013) MCP, kernal density estimation and LoCoH analysis for the core area zoning of the red-crowned crane's feeding habitat in Cheorwon, Korea. Kor. J. Environ. Ecol. 27:11-21.
49 Yoon, T. H. (2000) Some factors affecting population fluctuation of wintering White-naped and Red-crowned cranes in Cholwon Basin. Ph.D. Thesis, Kyung Hee University. 51pp. (in Korean with English abstract)
50 Atkinson, P. W., R. J. Fuller, J. A. Vickery, G. J. Conway, J. R. B. Tallowin, R. E. N. Smith, K. A. Haysom, T. C. Ings, E. J. Asteraki, and V. K. Brown (2005) Influence of agricultural management, sward structure and food resources on grassland field use by birds in lowland England. J. Appl. Ecol. 42:932-942.   DOI
51 Bian, J.-h., Y. Wu, L. L. Getz, Y.-F. Cao, F. Chen, and L. Yang (2011) Does maternal stress influence winter survival of offspring in root voles Microtus oeconomus? A field experiment. Oikos 120:47-56.   DOI
52 Clark, J. S., D. M. Bell, M. Kwit, A. Stine, B. Vierra, and K. Zhu (2012) Individual-scale inference to anticipate climate-change vulnerability of biodiversity. Phil. Trans. R. Soc. B 367:236-246.   DOI
53 Borras, A., J. C. Senar, F. Alba-Sanchez, J. A. Lopez-Saez, J. Cabrera, X. Colome, and T. Cabrera (2010) Citril finches during the winter: patterns of distribution, the role of pines and implications for the conservation of the species. Anim. Biodivers. Conserv. 33:89-115.
54 Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West (2004) Toward a metabolic theory of ecology. Ecology 85:1771-1789.   DOI
55 Clark, C. W., and M. Mangel (2000) Dynamic state variable models in ecology: methods and applications. Oxford University Press, Oxford. 304 pages.
56 Cresswell, W., J. A. Clark, and R. Macleod (2009) How climate change might influence the starvation-predation risk trade-off response. Proc. R. Soc. B 276:3553-3560.   DOI
57 Fernandez-Juricic, E., and J. L. Telleria (2000) Effects of human disturbance on spatial and temporal feeding patterns of Blackbird Turdus merula in urban parks in Madrid, Spain. Bird Study 47:13-21.   DOI
58 Fuller, R. J. (2000) Relationships between recent changes in lowland British agriculture and farmland bird populations: an overview. Ecology and Conservation of Lowland Farmland Birds - Proceedings of the 1999 BOU Spring Conference. pp5-16.
59 Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov (2001) Effects of size and temperature on metabolic rate. Science 293:2248-2251.   DOI