• 제목/요약/키워드: Martensite Stainless steels

검색결과 26건 처리시간 0.025초

17-4 PH Stainless 강의 질소침투 열처리 (A Study on the Nitrogen Permeation Treatment of 17-4 PH Stainless Steel)

  • 유대경;성장현
    • 열처리공학회지
    • /
    • 제19권2호
    • /
    • pp.83-89
    • /
    • 2006
  • The surface phase changes, the hardness variations, the nitrogen contents and the corrosion resistances of 17-4 PH stainless steel have been investigated after nitrogen permeation(solution nitriding) at a temperature ranges from $1050^{\circ}C$ to $1150^{\circ}C$ The phases appeared at the nitrogen-permeated surface layer were shown to martensite plus austenite and austenite, depending on the variation of nitrogen and chromium contents. And the surface hardness was also depended on the phases appeared at the surface layer from 370 Hv to 220 Hv. The precipitates exhibited at the nitrogen-permeated surface layer were niobium nitride, niobium chromium nitride and carbo-nitride in the austenite and martensite matrices. The surface nitrogen contents were followed by the Cr contents of the surface layers, representing 0.55% at the temperatures of $1050^{\circ}C$ and $1150^{\circ}C$ respectively, and 0.96% at $1100^{\circ}C$ at the distances of $60{\mu}m$ from the outmost surface. From the comparison of the corrosion resistances between nitrogen-permeated and solution-annealed steels, nitrogen permeation remarkably improved the corrosion resistance in the solution of 1 N $H_2SO_4$ due to the increase of nitrogen content in the surface austenite phase.

Effect of the Heat Treatment Parameters on the Phase Transformation and Corrosion Resistance of Fe-14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee Yong;Park, Yong Soo
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.56-61
    • /
    • 2007
  • Carbide dissolution during heating processes can change chemical composition of martensitic stainless steel in its austenitic phase. Although the austenitizing treatments were carried out at a homogeneous austenite region, the amount of carbon atom in the matrix differs. Increase in the amount of carbon contents in the matrix resulted in decreasing MS temperature, which consequently causes the volume fraction of the retained austenite to increase. This study reveals the effects of the austenitizing treatment on the properties of Fe - 0.3C - 14Cr - 3Mo martensitic stainless steel change with different austenitizing temperatures.

3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향 (Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.49-56
    • /
    • 2000
  • Recently developed Austenite stainless steel, 309L was used to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also, the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied. 1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained. 2) The form of martensite at the transition region was occurred by reversible transformation during cooling since the interdiffusion of Cr and Ni from weld metal and Fe and C from base metals at the transition region, causes to lowering the concentration of Cr and Ni at the transition region, leading to increasing Ms point. 3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling. 4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the gain boundary.

  • PDF

박육 스테인리스 주강의 유동성에 미치는 주조변수 및 합금원소의 영향 (Effects of Casting Variables and Alloying Elements on the Fluidity of Thin Wall Stainless Steel Castings)

  • 최학규;강상규;박홍일;정해용;배차헌
    • 한국주조공학회지
    • /
    • 제20권5호
    • /
    • pp.336-343
    • /
    • 2000
  • The effects of casting variables and alloying elements on the fluidity of thin wall cast stainless steels were investigated. Melts were poured into the sand molds to produce thin wall test castings. The length of it was 245 mm and the thickness varied at the interval of 0.5 in the range of 1.6 to 2.6 mm. For the same casting condition, the fluidities of austenitic stainless steel, ferritic, precipitation hardenable and martensite ones were better in the order. The higher the pouring temperature, the shorter the pouring rate and the better the fluidity were. The fluidity was increased with the addition of Cr and decreased with W and Nb.

  • PDF

냉간가공된 TP304 스테인리스강 모재와 용접재를 이용한 반복 변형 및 손상 거동에 미치는 중성자조사 영향 모사 (Simulating Nuetron Irradiation Effect on Cyclic Deformation and Failure Behaviors using Cold-worked TP304 Stainless Steel Base and Weld Metals)

  • 김상언;김진원
    • 한국압력기기공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.58-67
    • /
    • 2020
  • This study presents cyclic stress-strain and tensile test results at room temperature (RT) and 316℃ using cold-worked TP304 stainless steel base and weld metals. By comparing the cyclic hardening/softening behavior and failure cycle of cold-worked materials with those of irradiated austenitic stainless steels, the feasibility of simulating the irradiation effect on cyclic deformation and failure behaviors of TP304 stainless steel base and weld metals was investigated. It was found that, in the absence of strain-induced martensite trasformation, cold-working could properly simulate the change in cyclic hardening/softening behavior of TP304 stainless steel base and weld metals due to neutron irradiation. It was also recognized that cold-working could adequately simulate the reduction in failure cycles of TP304 stainless steel base and weld metals due to neutron irradition in the low-cycle fatigue region.

Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가 (Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel)

  • 김홍은;이기형;김민철;이호진;김경호;이창희
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

Microstructural and corrosion behavior of D3 tools steel and 440C SS for blade application

  • Nur Maizatul Shima Adzali;Nurul Abidah Mohamad Khapeli;Alina Rahayu Mohamed
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.183-194
    • /
    • 2024
  • D3 tools steel and 440C stainless steel (SS) are normally being employed for application such as knife blade and cutting tools. These steels are iron alloys which have high carbon and high chromium content. In this study, lab work focused on the microstructural and corrosion behavior of D3 tools steel and 440C SS after went through heat treatment processes. Heat treatments for both steels were started with normalizing at 1020 ℃, continue with hardening at 1000 ℃followed by oil quenching. Cryogenic treatment was carried out in liquid nitrogen for 24 hours. The addition of cryogenic heat treatment is believed to increase the hardness and corrosion resistance for steels. Both samples were then tempered at two different tempering temperatures, 160 ℃ and 426 ℃. For corrosion test, the samples were immersed in NaCl solution for 30 days to study the corrosion behavior of D3 tool steel and 440C SS after heat treatment. The mechanical properties of these steels have been investigated using Rockwell hardness machine before heat treatment, after heat treatment (before corrosion) and after corrosion test. Microstructure observation of samples was carried out by scanning electron microscopy. The corrosion rate of these steels was calculated after the corrosion test completed. From the results, the highest hardness is observed for D3 tool steel which tempered at 160 ℃(54.1 HRC). In terms of microstructural analysis, primary carbide and pearlite in the as-received samples transform to tempered martensite and cementite after heat treatment process. From this research, for corrosion test, heat treated 440C SS sample tempered with 426 ℃possessed the excellent corrosion resistance with corrosion rate 0.2808 mm/year.

해양 환경 하에서 431 스테인리스강의 하이브리드 실험을 통한 캐비테이션 손상 거동 (Cavitation Damage Behavior for 431 Stainless Steel by Hybrid Test in Sea Water)

  • 정상옥;김성종
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.271-276
    • /
    • 2013
  • The demand for stainless steel is continuously increasing with the development in offshore industry due to its excellent corrosion resistance characteristics. However, it suffers cavitation-erosion in application of high rotating fluid and the damage accelerates in combination with electrochemical corrosion because of Cl-ion in sea water. This paper investigated the complex damage behavior for 431 stainless steel, that is one of martensite stainless steels, through the hybrid test in sea water. Various experiments were carried out, including potential measurement, anodic/cathodic polarization experiment and Tafel analysis. Surface morphology was observed and damage depth was analyzed by SEM and 3D microscope after each experiment, respectively. The results revealed that more active potential was observed under cavitation condition than static condition due to breakdown of passive film and activation of charge transfer, and that higher corrosion current density was obtained under cavitation condition due to synergistic effect of corrosion and erosion.

3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향 (Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.176-176
    • /
    • 2000
  • Recently developed Austenite stainless steel,309L was to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also. the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied.1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained.2) The form of martensite at the transition region was occured by reversible transition region, leading to increasing Ms point.3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling.4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the grain boudary.(Received August 3, 1999)

Al 함유 13%Cr 스테인리스강의 표면 질소침투 열처리에 미치는 첨가원소 탄소의 영향 (13%Cr 스테인리스강의 고질소 표면침투 열처리) (Effect of Carbon Content on the Nitrogen Permeation Heat Treatment in Aluminum Bearing 13%Cr Stainless Steels)

  • 유대경;박진욱;주동원;김기돈;성장현
    • 열처리공학회지
    • /
    • 제13권3호
    • /
    • pp.151-157
    • /
    • 2000
  • This study aims to investigate the effect of carbon content on the surface nitrogen permeation of 13%Cr-1.8%Al alloyed stainless steels. The surface nitrogen permeation was performed at $1050^{\circ}C{\sim}1200^{\circ}C$ in the $1kg/cm^2$ nitrogen gas atmosphere. The nitrogen permeated surface layer of the specimen containing 0.03%C consists of AlN, martensite and retained austenite phases. while the surface layer of the specimen containing 0.14%C appears the $AlFe_3C_x$ phase including former three phases. The specimen containing 0.14%C shows lower total case depth than that containing 0.03%C at the nitrogen permeation temperatures of $1050^{\circ}C$ and $1100^{\circ}C$, while the total case depth of the specimen containing 0.14%C is remarkably increased at the temperature of $1150^{\circ}C$ and $1200^{\circ}C$ due to the increase in the retained austenite content. Martensitic phase, AlN and $AlFe_3C_x$ precipitate of the nitrogen permeated surface layer cause to increase the surface hardness of 550~600Hv.

  • PDF