Browse > Article
http://dx.doi.org/10.5695/JKISE.2013.46.6.271

Cavitation Damage Behavior for 431 Stainless Steel by Hybrid Test in Sea Water  

Chong, Sang-Ok (Division of Marine Engineering, Mokpo Maritime University)
Kim, Seong-Jong (Division of Marine Engineering, Mokpo Maritime University)
Publication Information
Journal of the Korean institute of surface engineering / v.46, no.6, 2013 , pp. 271-276 More about this Journal
Abstract
The demand for stainless steel is continuously increasing with the development in offshore industry due to its excellent corrosion resistance characteristics. However, it suffers cavitation-erosion in application of high rotating fluid and the damage accelerates in combination with electrochemical corrosion because of Cl-ion in sea water. This paper investigated the complex damage behavior for 431 stainless steel, that is one of martensite stainless steels, through the hybrid test in sea water. Various experiments were carried out, including potential measurement, anodic/cathodic polarization experiment and Tafel analysis. Surface morphology was observed and damage depth was analyzed by SEM and 3D microscope after each experiment, respectively. The results revealed that more active potential was observed under cavitation condition than static condition due to breakdown of passive film and activation of charge transfer, and that higher corrosion current density was obtained under cavitation condition due to synergistic effect of corrosion and erosion.
Keywords
Cavitation; Electrochemical experiment; 431 stainless steel; Hybrid test;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Okamoto, Corrosion Science, 13 (1973) 471.   DOI   ScienceOn
2 Denny A. Jones, "Principles and Prevention of Corrosion", 2nd Edition (1996).
3 R. J. K. Wood, S. A. Fry, J. Fluids Eng., 111 (1989) 271.   DOI
4 C. H. Tang, F. T. Cheng, H. C. Man, Surf. Coat. Tech., 200 (2006) 2602.   DOI   ScienceOn
5 A. Al-Hashem, W. Riad, Materials Characterization, 47 (2001) 389.   DOI   ScienceOn
6 A. Al-Hashem, W. Riad, Materials Characterization, 47 (2001) 383.   DOI   ScienceOn
7 F. J. da Silva, R. R. Marinho, M. T. P. Paes, S. D. Franco, Wear, 304 (2013) 183.   DOI   ScienceOn
8 W. Lui, Y G. Zheng, C. S. Liu, Z. M. Yao, W. Ke, Wear, 254 (2003) 713.   DOI   ScienceOn
9 Annual Book of ASTM Standards G32-92, 110, (1992).
10 M. G. Fontana, "Corrosion Engineering", 3rd Edition, McGraw-Hill Book Company, New York (1986).
11 G. Bregliozzi, A. Di Schino, S. I. U. Ahmed, J. M. Kenny, H. Haefke, Wear, 258 (2005) 503.   DOI   ScienceOn
12 S. Luo, Y. Zheng, W. Liu, H. Jing, Z. Yao, W. Ke, J. Mater. Sci. Technol., 19 (2003) 346.
13 Denny A. Jones, "Principles and Prevention of Corrosion", 2nd Edition, 334 (1996).
14 S. J. Kim, K. Y. Hyun, Corrosion Sci. Technol., 11 (2012) 151.
15 S. J. Kim, K. Y. Hyun, S. K. Jang, Current Appl. Phys., 12 (2012) S24.
16 O. Takakuwa H. Soyama, Int. J. Hydrogen Energy, 37 (2012) 5268.
17 K. Hirano, K. Enomoto, E. Hayashi, K. Kurosawa, J. JSMS, 45 (1996) 740.
18 A. Lichtarowicz, Fluid Engineering Conference ASTM, W. L. Swifted Boulder (1981).
19 A. Lichtarowicz, P. Kay, 6th International Conferenceon Erosionby Liquid and Solid Impact, 15 (1983).
20 H. Soyama, J. D. Park, M. Saka, J. Manuf. and Eng., ASME, 22 (2000) 83.
21 H. Soyama, Y. Yamauchi, T. Ikohagi, R. Oba, K. Sato, T. Shindo, R. Oshima, J. Jet Flow Eng., 13 (1996) 25.
22 K. M. Moon, K. J. Kim, J. G. Kim, Journal of the Corrosion Science Society of Korea, 17 (1988) 90.