DOI QR코드

DOI QR Code

Cavitation Damage Behavior for 431 Stainless Steel by Hybrid Test in Sea Water

해양 환경 하에서 431 스테인리스강의 하이브리드 실험을 통한 캐비테이션 손상 거동

  • Chong, Sang-Ok (Division of Marine Engineering, Mokpo Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo Maritime University)
  • 정상옥 (목포해양대학교 기관시스템공학부) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2013.12.13
  • Accepted : 2013.12.24
  • Published : 2013.12.31

Abstract

The demand for stainless steel is continuously increasing with the development in offshore industry due to its excellent corrosion resistance characteristics. However, it suffers cavitation-erosion in application of high rotating fluid and the damage accelerates in combination with electrochemical corrosion because of Cl-ion in sea water. This paper investigated the complex damage behavior for 431 stainless steel, that is one of martensite stainless steels, through the hybrid test in sea water. Various experiments were carried out, including potential measurement, anodic/cathodic polarization experiment and Tafel analysis. Surface morphology was observed and damage depth was analyzed by SEM and 3D microscope after each experiment, respectively. The results revealed that more active potential was observed under cavitation condition than static condition due to breakdown of passive film and activation of charge transfer, and that higher corrosion current density was obtained under cavitation condition due to synergistic effect of corrosion and erosion.

Keywords

References

  1. G. Okamoto, Corrosion Science, 13 (1973) 471. https://doi.org/10.1016/0010-938X(73)90031-0
  2. Denny A. Jones, "Principles and Prevention of Corrosion", 2nd Edition (1996).
  3. R. J. K. Wood, S. A. Fry, J. Fluids Eng., 111 (1989) 271. https://doi.org/10.1115/1.3243641
  4. C. H. Tang, F. T. Cheng, H. C. Man, Surf. Coat. Tech., 200 (2006) 2602. https://doi.org/10.1016/j.surfcoat.2004.12.021
  5. A. Al-Hashem, W. Riad, Materials Characterization, 47 (2001) 389. https://doi.org/10.1016/S1044-5803(02)00186-9
  6. A. Al-Hashem, W. Riad, Materials Characterization, 47 (2001) 383. https://doi.org/10.1016/S1044-5803(02)00185-7
  7. F. J. da Silva, R. R. Marinho, M. T. P. Paes, S. D. Franco, Wear, 304 (2013) 183. https://doi.org/10.1016/j.wear.2013.04.025
  8. W. Lui, Y G. Zheng, C. S. Liu, Z. M. Yao, W. Ke, Wear, 254 (2003) 713. https://doi.org/10.1016/S0043-1648(03)00128-5
  9. Annual Book of ASTM Standards G32-92, 110, (1992).
  10. M. G. Fontana, "Corrosion Engineering", 3rd Edition, McGraw-Hill Book Company, New York (1986).
  11. G. Bregliozzi, A. Di Schino, S. I. U. Ahmed, J. M. Kenny, H. Haefke, Wear, 258 (2005) 503. https://doi.org/10.1016/j.wear.2004.03.024
  12. S. Luo, Y. Zheng, W. Liu, H. Jing, Z. Yao, W. Ke, J. Mater. Sci. Technol., 19 (2003) 346.
  13. Denny A. Jones, "Principles and Prevention of Corrosion", 2nd Edition, 334 (1996).
  14. S. J. Kim, K. Y. Hyun, Corrosion Sci. Technol., 11 (2012) 151.
  15. S. J. Kim, K. Y. Hyun, S. K. Jang, Current Appl. Phys., 12 (2012) S24.
  16. O. Takakuwa H. Soyama, Int. J. Hydrogen Energy, 37 (2012) 5268.
  17. K. Hirano, K. Enomoto, E. Hayashi, K. Kurosawa, J. JSMS, 45 (1996) 740.
  18. A. Lichtarowicz, Fluid Engineering Conference ASTM, W. L. Swifted Boulder (1981).
  19. A. Lichtarowicz, P. Kay, 6th International Conferenceon Erosionby Liquid and Solid Impact, 15 (1983).
  20. H. Soyama, J. D. Park, M. Saka, J. Manuf. and Eng., ASME, 22 (2000) 83.
  21. H. Soyama, Y. Yamauchi, T. Ikohagi, R. Oba, K. Sato, T. Shindo, R. Oshima, J. Jet Flow Eng., 13 (1996) 25.
  22. K. M. Moon, K. J. Kim, J. G. Kim, Journal of the Corrosion Science Society of Korea, 17 (1988) 90.