• Title/Summary/Keyword: Marshall stability test

Search Result 41, Processing Time 0.024 seconds

Effect of the Compaction Energy and the Marshall Stability due to the Marshall Equipments and Installation Conditions (마샬시험 장치 및 설치조건이 다짐에너지와 안정도에 미치는 영향)

  • Park, Tae-Soon;Kim, Yong-Ju
    • International Journal of Highway Engineering
    • /
    • v.2 no.4 s.6
    • /
    • pp.123-131
    • /
    • 2000
  • The compaction equipment and the Marshall stability head are the two important testing equipment for the Marshall test. The compaction equipment is closely related to the air void, VMA and compactability of the mixtures, and the stability head is related to the Marshall stability and the flow, therefore the size and the shape of the equipment is essential for finding the accurate optimum asphalt content for the asphalt mix design. However, the size and the shape of the equipment currently used and the condition of the installation of compaction pedestal in this country are different from each agency and manufacturer. The national inspection of the Marshall equipment is necessary because the difference can affect the test results and also the performance of the asphalt pavement.

  • PDF

Performance Evaluation of High-RAP Asphalt Mixtures using Rapid-Setting Polymer-Modified Asphalt Emulsion (긴급보수용 개질 유화아스팔트 고비율 순환골재를 사용한 상온 아스팔트 혼합물의 성능 평가)

  • Kwon, Bong Ju;Heo, Jae Min;Han, Yong Jin;Rhee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.21-30
    • /
    • 2015
  • PURPOSES : The purpose of this study was to evaluate the performance of rapid-setting polymer-modified asphalt mixtures with a high reclaimed asphalt pavement (RAP) content. METHODS: A literature review revealed that emulsified asphalt is actively used for cold-recycled pavement. First, two types of rapid-setting polymer-modified asphalt emulsion were prepared for application to high-RAP material with no virgin material content. The quick-setting polymer-modified asphalt mixtures using two types of rapid-setting polymer-modified asphalt emulsion were subjected to the following tests: 1) Marshall stability test, 2) water immersion stability test and 3) indirect tensile strength ratio test. RESULTS AND CONCLUSIONS : Additional re-calibration of the RAP was needed for laboratory verification because the results of analyzing RAP aggregates, which were collected from different job sites, did not deviate from the normal range. The Marshall stability of each type of binder under dry conditions was good. However, the Type B mixtures with bio-additives performed better in the water immersion stability test. Moreover, the overall results of the indirect tensile strength test of RAP mixtures with Type B emulsions exceeded 0.7. Further research, consisting of lab testing and on-site application, will be performed to verify the possibility of using RAP for minimizing the closing of roadways.

Improvement of Marshall Mix Design and Comparative Evaluation with Current Marshall Mix Design Method (마샬 배합설계 방법의 개선과 기존 방법과의 비교 평가)

  • Hwang, Sung-Do;Yoon, An-Sang;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.13-24
    • /
    • 2004
  • The Marshall mix design method used in Korea, which was described in the design & construction regulation, had been introduced from Japan Highway Cooperation standard guide. Most engineers have thought that it is the major reason that causes pavement distresses. Therefore, there is a need to modify the current Marshall mix design through using the volumetric design concept, which is most widely used in asphalt mix design. The modified mix design determines the preliminary optimum asphalt content at 4% VTM (Voids in Total Mix). If the Marshall properties, which are VFA, VMA, stability, and flow, were satisfied with the requirements, the preliminary optimum asphalt content is determined as the final optimum asphalt content. The modified Marshall mix design considers VMA. while the current Marshall mix design does not consider VMA. By considering the Marshall stability and flow as the criteria instead of design factors, the modified Marshall mix design is able to decrease the errors occurred in Marshall stability test The test was performed to compare the Marshall properties between current and modified Marshall mix design. The left results showed that there was no difference in the Marshall properties, except for VTM. Thus, the modified Marshall mix design can produce the asphalt mixtures with the constant VTM (4%), and it can improve the asphalt mixture quality in Korea.

  • PDF

Evaluation of the Asph81t Mixture Performance with Waste Materials

  • Lee, Kwan-Ho;Lovell, C
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-34
    • /
    • 1996
  • The objective of this paper is to evaluate the asphalt mixture performance with pyrolyzed carbon black(CBP) and air -cooled iron blast furnace slag. Marshall mix design was performed to determine the optimum binder content, The optimum binder content ranged from 6.3 percent to 7.75 percent. Dynamic creep testing was carried out using mixtures at the optimum binder content. Based on the test results, the use of pyrolyzed carbon black and slag in the asphalt pavement showed a positive result, such as the increase of Marshall stability, the decrease of the strain rate and the decrease in the mix stiffness rate at high temperature(5$0^{\circ}C$) and 137.9 kPa confinement. Within the limits of this research. it was concluded that pyrolyzed carbon black as an additive and slag as a coarse aggregate could be used to produce an asphalt paving mixture that has good stability, stiffness, and rutting resistance.

  • PDF

A Study for Selection and Field Applicability of Asphalt Precast Pothole Repair Materials (아스팔트 프리캐스트 포트홀 보수재료의 선정과 현장 적용성에 관한 연구)

  • Kim, Jincheol;Bae, Sungho;Lee, Jinho;Yang, Jaebong;Kim, Jiwon
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.21-33
    • /
    • 2014
  • PURPOSES: The purpose of this study was to break away from the workforce method using cold-mix asphalt mixtures and has a constant quality and has develop repair materials of pre-production asphalt-precast types. METHODS: The selection of the repair material was determined as the results obtained through physical properties of materials and the field applicability. In case of repair materials, values obtained through Marshall stability test & the dynamic stability test & retained stability test as well as the site conditions was considered. In case of adhesive, test results were obtained through examination of the bond strength(tensile, shear) and the field applicability of the adhesive was examined through combined specimens to simulate field applications. RESULTS : According to the results of laboratory tests, in the case of repair materials, Marshall stability and dynamic stability, retained stability of cold-mix reaction type asphalt mixture is the highest. In the case of adhesive, two-component epoxy-urea has a very high bonding strength(tensile, shear) was most excellent. According to the results of field tests, when epoxy-urea was excellent workability. Also, the repair body through actual mock-up test did not occur large deformation and fracture after 12 months. CONCLUSIONS : A suitable repair material is cold-mix reaction type mixture of asphalt-precast, a suitable adhesive is a two-component epoxy-urea.

Fundamental Properties of Asphalt Concrete Mixture as Using TDF Fly Ash as Mineral Filler (아스팔트 콘크리트 채움재로 TDF Fly Ash 적용에 따른 아스팔트 혼합물 기초 물성 평가)

  • Choi, Min-Ju;Kim, Hyeokjung;Kim, Yongjoo;Lee, Jaejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • TDF (Tire derived fuel) Fly ash is an industrial by-product when scraped tire was used a fuel source at the power plant. TDF Fly ash has been classified as domestic waste at the workplace so far and has not been appropriately utilized. We conducted a fundamental physical property test of asphalt mixture to investigate the possibility of using TDF Fly ash as a mineral filler of asphalt mixture for exploring new usage strategies. TDF Fly ash meets KS F 3501 asphalt mixture mineral filler criteria. And the optimal asphalt binder amount was determined to be 4.5% by Marshall design. Mineral filler content was determined at 3% and analyzed by comparing using mineral filler as stone powder. The basic physical property test of the asphalt mixture was evaluated to the provision indicated in "Production and Construction Guidelines for Asphalt Mixture" published by the Ministry of Land, Infrastructure and Transport. In the test, Marshall stability test, dynamic immersion test, tensile strength ratio test, wheel tracking test were carried out. As a result of the experiment, Marshall stability and dynamic stability satisfied the standards, and confirmed the stability and Dynamic immersion and tensile strength ratio test that TDF Fly ash is more effective for scaling and moisture resistance than stone dust. Therefore, in this research, it is expected that multilateral utilization of TDF Fly ash, and a positive effect can be also expected.

Evaluation of TDF ash as a Mineral Filler in Asphalt Concrete (TDF ash를 채움재로 사용한 아스팔트 콘크리트 물성 평가)

  • Choi, MinJu;Lee, JaeJun;Kim, HyeokJung
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2016
  • PURPOSES : The new waste management policy of South Korea encourages the recycling of waste materials. One material being recycled currently is tire-derived fuel (TDF) ash. TDF is composed of shredded scrap tires and is used as fuel in power plants and industrials plants, resulting in TDF ash, which has a chemical composition similar to that of the fly ash produced from coal. The purpose of this study was to evaluate the properties of an asphalt concrete mix that used TDF ash as the mineral filler. METHODS : The properties of the asphalt concrete were evaluated for different mineral filler types and contents using various measurement techniques. The fundamental physical properties of the asphalt concrete specimens such as their gradation and antistripping characteristics were measured in accordance with the KS F 3501 standard. The Marshall stability test was performed to measure the maximum load that could be supported by the specimens. The wheel tracking test was used to evaluate the rutting resistance. To investigate the moisture susceptibility of the specimens, dynamic immersion and tensile strength ratio (TSR) measurements were performed. RESULTS : The test results showed that the asphalt concrete containing TDF ash satisfied all the criteria listed in the Guide for Production and Construction of Asphalt Mixtures (Ministry of Land, Infrastructure and Transport, South Korea). In addition, TDF ash exhibited better performance than that of portland cement. The Marshall stability of the asphalt concrete with TDF ash was higher than 7500 N. Further, its dynamic stability was also higher than that listed in the guide. The results of the dynamic water immersion and the TSR showed that TDF ash shows better moisture resistance than does portland cement. CONCLUSIONS : TDF ash can be effectively recycled by being used as a mineral filler in asphalt, as it exhibits desirable physical properties. The optimal TDF ash content in asphalt concrete based on this study was determined to be 5%. In future works, the research team will compare the characteristics of asphalt concrete as function of the mineral filler types.

A Development of Thin Quiet-Permeable Asphalt Concrete (박층 저소음.배수성 아스팔트 혼합물 개발)

  • Jun, Soon-Je;Jo, Shin-Haeng;Jeon, Jun-Young;Ryu, Deug-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.305-308
    • /
    • 2008
  • This paper describes a research study on the durability and strength properties of thin quiet-permeable asphalt concrete. Such asphalt mixes have high porosity, which offers significantly better drainages than normal mix designs. However, these materials also exhibit poor durability and strength limiting their use in pavement application. To remedy this, fiber and polymer modifiers have been proposed. All samples were added to modified binder which were prepared with or without the modifiers and fiber using Marshall mix procedures and were experimentally tested using various standardized testing procedures including percent air void for porosity, cantabro test and marshall stability. In general, the results of marshall stability showed that modified mixtures were equivalent to unmodified mixtures. Especially, the result of cantabro tested modified mixtures was superior to unmodified mixtures.

  • PDF

Mechanical Characteristics of Asphalt Stabilized Soil (아스팔트 안정처리토의 역학적 특성 연구)

  • 박태순;최필호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.189-197
    • /
    • 2003
  • The treatment and hauling of surplus soils which occur from construction activity are costly and have been demanding a reasonable recycling method. This study presents laboratory test results regarding the mechanistic properties of asphalt stabilized soils. The foamed asphalt equipment which generates the asphalt bubble was used to mix the soil. The marshall stability, indirect tensile test, resilient modulus, creep test and triaxial test(UU) were conducted to find out the performance of the asphalt stabilized soil. The test results were compared with the samples that fabricated in different conditions(the samples without asphalt and the reinforced samples using 2% cement). The inclusion of the asphalt in the soil has improved the marshall stability, resilient modulus and moisture susceptibility, and the addition of the 2% cement has even more increased these properties. The amount of the fines and the optimum moisture contents for mixing affects the mechanistic properties and important parameters for mix design.

Performance Evaluation of 100 % RAP Asphalt Mixtures using different types of Rapid-Setting Polymer-Modified Asphalt Emulsion for Spray Injection Application (속경성 바인더 유형에 따른 긴급보수용 스프레이 패칭 상온 재활용 아스팔트 혼합물(RAP)의 성능 평가)

  • Kim, Doo Yeol;Jeon, Ji Seong;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • PURPOSES : The purpose of this study was to determine the optimum mix design of the content of 100 % reclaimed asphalt pavement (RAP) for spray injection application with different binder types. METHODS : Literature review revealed that spray injection method is the one of the efficient and economical methods for repairing a small defective area on an asphalt pavement. The Rapid-Setting Polymer modified asphalt mixtures using two types of rapid setting polymers-asphalt emulsion and a quick setting polymer asphalt emulsion-were subjected to the following tests to determine optimum mix designs and for performance comparison: 1) Marshall stability test, 2) Retained stability test, 3) Wet track abrasion test, and 4) Dynamic stability test. RESULTS and CONCLUSIONS : Type A, B, and C emulsions were tested with different mix designs using RAP aggregates, to compare the performances and determine the optimum mix design. Performance of mixtures with Type A emulsion exceeded that of mixtures with Type B and C emulsion in all aspects. In particular, Type A binder demonstrated the highest performance for WTAT at low temperature. It demonstrated the practicality of using Type A mixture during the cold season. Furthers studies are to be performed to verify the optimum mix design for machine application. Differences in optimum mix designs for machine application and lab application will be corrected through field tests.