• 제목/요약/키워드: Markov-Modeling

검색결과 272건 처리시간 0.025초

A Solution to Privacy Preservation in Publishing Human Trajectories

  • Li, Xianming;Sun, Guangzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3328-3349
    • /
    • 2020
  • With rapid development of ubiquitous computing and location-based services (LBSs), human trajectory data and associated activities are increasingly easily recorded. Inappropriately publishing trajectory data may leak users' privacy. Therefore, we study publishing trajectory data while preserving privacy, denoted privacy-preserving activity trajectories publishing (PPATP). We propose S-PPATP to solve this problem. S-PPATP comprises three steps: modeling, algorithm design and algorithm adjustment. During modeling, two user models describe users' behaviors: one based on a Markov chain and the other based on the hidden Markov model. We assume a potential adversary who intends to infer users' privacy, defined as a set of sensitive information. An adversary model is then proposed to define the adversary's background knowledge and inference method. Additionally, privacy requirements and a data quality metric are defined for assessment. During algorithm design, we propose two publishing algorithms corresponding to the user models and prove that both algorithms satisfy the privacy requirement. Then, we perform a comparative analysis on utility, efficiency and speedup techniques. Finally, we evaluate our algorithms through experiments on several datasets. The experiment results verify that our proposed algorithms preserve users' privay. We also test utility and discuss the privacy-utility tradeoff that real-world data publishers may face.

도로자산관리를 위한 포장종합평가지수의 속성과 변화과정의 모델링 (Internal Property and Stochastic Deterioration Modeling of Total Pavement Condition Index for Transportation Asset Management)

  • 한대석;도명식;김부일
    • 한국도로학회논문집
    • /
    • 제19권5호
    • /
    • pp.1-11
    • /
    • 2017
  • PURPOSES : This study is aimed at development of a stochastic pavement deterioration forecasting model using National Highway Pavement Condition Index (NHPCI) to support infrastructure asset management. Using this model, the deterioration process regarding life expectancy, deterioration speed change, and reliability were estimated. METHODS : Eight years of Long-Term Pavement Performance (LTPP) data fused with traffic loads (Equivalent Single Axle Loads; ESAL) and structural capacity (Structural Number of Pavement; SNP) were used for the deterioration modeling. As an ideal stochastic model for asset management, Bayesian Markov multi-state exponential hazard model was introduced. RESULTS:The interval of NHPCI was empirically distributed from 8 to 2, and the estimation functions of individual condition indices (crack, rutting, and IRI) in conjunction with the NHPCI index were suggested. The derived deterioration curve shows that life expectancies for the preventive maintenance level was 8.34 years. The general life expectancy was 12.77 years and located in the statistical interval of 11.10-15.58 years at a 95.5% reliability level. CONCLUSIONS : This study originates and contributes to suggesting a simple way to develop a pavement deterioration model using the total condition index that considers road user satisfaction. A definition for level of service system and the corresponding life expectancies are useful for building long-term maintenance plan, especially in Life Cycle Cost Analysis (LCCA) work.

이차원 은닉 마르코프 격자 모형 (Two-Dimensional Model of Hidden Markov Lattice)

  • 신봉기
    • 한국멀티미디어학회논문지
    • /
    • 제3권6호
    • /
    • pp.566-574
    • /
    • 2000
  • HMM이 시계열 모델로써 우수함이 널리 입증되면서 이차원 모델로 확장해 보려는 연구 결과도 늘어났지만 아직까지 임의의 객 체 패턴의 다양한 변형을 모델링하기에는 너무 단순한 경우가 대부분이다. 따라서 HMM이 시계열 데이터에서 보여준 성과를 영상 데이터에서 기대하기는 어렵다. 즉, 아직 대부분의 모델이 2D HMM으로 보기에는 부족하다고 판단된다. 본 논문에서 제안하는 모델은 이 차원 공간에서 상하, 좌우 방향의 진행 관계(causality)가 존재하는 은닉 마르코프 격자 또는 HML이다. 여기에 격자 구성 조건을 추가하여 모델 평가와 디코딩, 그리고 MLE 매개변수 추정법에 의한 훈련 알고리즘을 이론적으로 유도, 개발하였다. 본 모델은 기존의 필드형 모델과 달리 필기 문자 영상과 같이 다양한 국소적 형태 변형을 효과적으로 모델링하는 유용한 방법으로 사용될 수 있다.

  • PDF

피라미드 구조와 베이지안 접근법을 이용한 Markove Random Field의 효율적 모델링 (Efficient Methodology in Markov Random Field Modeling : Multiresolution Structure and Bayesian Approach in Parameter Estimation)

  • 정명희;홍의석
    • 대한원격탐사학회지
    • /
    • 제15권2호
    • /
    • pp.147-158
    • /
    • 1999
  • 지표면에 대한 다양한 정보를 제공해 주는 원격탐사기법은 수 십년 동안 우리의 환경을 관찰하고 이해하는데 중요한 역할을 해왔다. 이러한 원격탐사 자료를 이용하는데 다양한 디지털 영상처리기법이 도입되어 자료에서 관찰되는 여러 가지 특성을 모형화하고 처리하는데 매우 유용하게 활용되어져 왔다. 화소들 간의 공간적 관계를 고려하는 Markov Random Field (MRF) 모형은 텍스처 모델링이나 영상분할 및 분류와 같은 여러 분야에서 많이 이용되는 모형으로 이것에 기초한 다양한 알고리즘이 발표되었다. 보통 원격탐사 자료는 그 크기가 매우 크고 시간적 간격을 두고 변화를 관측해 가는 경우에는 분석해야할 자료의 양이 매우 방대하다. 이러한 자료를 처리하는데 걸리는 시간은 처리해야할 자료의 양과는 비선형적 관계에 있다. 본 논문에서는 MRF를 이용하여 원격탐사 자료를 처리할 때 걸리는 시간을 단축하기 위한 방법론이 연구되었다. 이를 위해 논리적 구조로 영상을 피라미드형태로 감소하는 크기로 분석하는 multiresolution 구조가 고려되었는데 이는 연상의 거시적 특징과 미세한 특징을 효율적으로 분석할 수 있는 방법을 제공해 준다. 영상의 크기가 커질수록 파라미터 추정 또한 복잡하고 많은 시간을 요하게 된다. 본 논문에서는 이를 위해 Bayesian 방법을 이용하여 원격탐사 영상과 같은 크기가 큰 영상의 MRF 모형의 파라미터를 효율적으로 추정할 수 있는 방법에 제안되어 있다.

은닉 마르코프 모델 기반 동작 인식 방법 (Human Primitive Motion Recognition Based on the Hidden Markov Models)

  • 김종호;윤요섭;김태영;임철수
    • 한국멀티미디어학회논문지
    • /
    • 제12권4호
    • /
    • pp.521-529
    • /
    • 2009
  • 본 논문은 비전 기반 동작 인식 방법으로 모범 동작의 유형을 모형화하고 이를 이용하여 사용자의 동작을 인식하고 모범동작과 사용자의 동작간의 유사도를 측정하는 방법을 제안한다. 동작 인식을 위하여 은닉 마르코프 모델 기반의 유형화 기법을 통하여 모범 동작의 유형 모델을 구성하고 이를 이용하여 사용자의 동작을 인식한다. 유사도 측정을 위하여 편집 거리 알고리즘을 응용하여 모범 동작과 사용자 동작의 유사도를 측정하고 점수 표기가 가능하도록 하였다. 본 논문에서 제안하는 동작 인식 처리 방법은 평균 93% 이상의 높은 인식율을 보였다. 본 연구의 결과는 동작 인식 기반 게임, 자세인식, 동작의 반복 훈련 및 훈련 달성도 측정을 요하는 재활훈련 시스템 등에 활용 가능하다.

  • PDF

영역 기준 이동통신망에서 이동성의 모형화 및 모형들의 비교 분석 (A New Mobility Modeling and Comparisons of Various Mobility Models in Zone-based Cellular Networks)

  • 홍정식;장인갑;이진승;이창훈
    • 산업공학
    • /
    • 제16권spc호
    • /
    • pp.21-27
    • /
    • 2003
  • Objective of this paper is to develop the user mobility model(UMM) which is used for the performance analysis of location update and paging algorithm and at the same time, consider the user mobility pattern(UMP) in zone-based cellular networks. User mobility pattern shows correlation in space and time. UMM should consider these correlations of UMP. K-dimensional Markov chain is presented as a UMM considering them where the states of Markov chain are defined as the current location area(LA) and the consecutive LAs visited in the path. Also, a new two dimensional Markov chain composed of current LA and time interval is presented. Simulation results show that the appropriate size of K in the former UMM is two and the latter UMM reflects the characteristic of UMP well and so is a good model for the analytic method to solve the performance of location update and paging algorithm.

마코프 국면전환을 고려한 이자율 기간구조 연구 (The Behavior of the Term Structure of Interest Rates with the Markov Regime Switching Models)

  • 이유나;박세영;장봉규;최종오
    • 대한산업공학회지
    • /
    • 제36권3호
    • /
    • pp.203-211
    • /
    • 2010
  • This study examines a cointegrated vector autoregressive (VAR) model where parameters are subject to switch across the regimes in the term structure of interest rates. To employ the regime switching framework, the Markov-switching vector error correction model (MS-VECM) is allowed to the regime shifts in the vector of intercept terms, the variance-covariance terms, the error correction terms, and the autoregressive coefficient parts. The corresponding approaches are illustrated using the term structure of interest rates in the US Treasury bonds over the period of 1958 to 2009. Throughout the modeling procedure, we find that the MS-VECM can form a statistically adequate representation of the term structure of interest rate in the US Treasury bonds. Moreover, the regime switching effects are analyzed in connection with the historical government monetary policy and with the recent global financial crisis. Finally, the results from the comparisons both in information criteria and in forecasting exercises with and without the regime switching lead us to conclude that the models in the presence of regime dependence are superior to the linear VECM model.

전리층 지연 효과의 통계적 모델을 이용한 반송파 정밀측위 (Precise Positioning from GPS Carrier Phase Measurement Applying Stochastic Models for Ionospheric Delay)

  • 양효진;권재현
    • 한국측량학회지
    • /
    • 제25권4호
    • /
    • pp.319-325
    • /
    • 2007
  • GPS를 이용한 상대측위에 있어서 기선의 길이가 길어질수록 측위지점 사이의 상관관계 저하로 인하여 전리층 지연 효과와 같은 오차가 관측치내에 존재하는 문제가 여전히 남아있다. 본 연구에서는 중기선 이상의 상대측위에서 가장 큰 오차요인으로 알려져 있는 전리층 지연 효과를 통계적 모델을 이용하여 모델링하고, 이론적 경험적으로 가장 좋다고 알려져 있는 LAMBDA방법을 이용하여 모호정수를 결정하였다. 상시관측소데이터를 이용하여 통계적 모델을 경험적으로 Gauss-Markov 1차를 결정하였으며, 모델 파라미터인 상관시간(correlation time) 및 모델의 분산을 산출하였다. 최종적으로 개발된 알고리즘의 적용 및 정확도 분석을 위하여 상용소프트웨어 및 Bernese와 비교하였다.

Bayesian pooling for contingency tables from small areas

  • Jo, Aejung;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1621-1629
    • /
    • 2016
  • This paper studies Bayesian pooling for analysis of categorical data from small areas. Many surveys consist of categorical data collected on a contingency table in each area. Statistical inference for small areas requires considerable care because the subpopulation sample sizes are usually very small. Typically we use the hierarchical Bayesian model for pooling subpopulation data. However, the customary hierarchical Bayesian models may specify more exchangeability than warranted. We, therefore, investigate the effects of pooling in hierarchical Bayesian modeling for the contingency table from small areas. In specific, this paper focuses on the methods of direct or indirect pooling of categorical data collected on a contingency table in each area through Dirichlet priors. We compare the pooling effects of hierarchical Bayesian models by fitting the simulated data. The analysis is carried out using Markov chain Monte Carlo methods.

채널의 1차 2차 통계적 특성이 큐의 성능에 미치는 영향 (Effect of First and Second Order Channel Statistics on Queueing Performance)

  • 김영용
    • 제어로봇시스템학회논문지
    • /
    • 제8권4호
    • /
    • pp.288-291
    • /
    • 2002
  • We characterize multipath fading channel dynamics at the packet level and analyze the corresponding data queueing performance in various environments. We identify the similarity between wire-line queueing analysis and wireless network per-formance analysis. The second order channel statistics, i.e. channel power spectrum, is fecund to play an important role in the modeling of multipath fading channels. However, it is identified that the first order statistics, i.e. channel CDF also has significant impact on queueing performance. We use a special Markov chain, so-called CMPP, throughout this paper.