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Abstract 
 

With rapid development of ubiquitous computing and location-based services (LBSs), human 
trajectory data and associated activities are increasingly easily recorded. Inappropriately 
publishing trajectory data may leak users’ privacy. Therefore, we study publishing trajectory 
data while preserving privacy, denoted privacy-preserving activity trajectories publishing 
(PPATP). We propose S-PPATP to solve this problem. S-PPATP comprises three steps: 
modeling, algorithm design and algorithm adjustment. During modeling, two user models 
describe users’ behaviors: one based on a Markov chain and the other based on the hidden 
Markov model. We assume a potential adversary who intends to infer users’ privacy, defined 
as a set of sensitive information. An adversary model is then proposed to define the 
adversary’s background knowledge and inference method. Additionally, privacy requirements 
and a data quality metric are defined for assessment. During algorithm design, we propose two 
publishing algorithms corresponding to the user models and prove that both algorithms satisfy 
the privacy requirement. Then, we perform a comparative analysis on utility, efficiency and 
speedup techniques. Finally, we evaluate our algorithms through experiments on several 
datasets. The experiment results verify that our proposed algorithms preserve users’ privay. 
We also test utility and discuss the privacy-utility tradeoff that real-world data publishers may 
face. 
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1. Introduction 

The last few years have seen the rapid development of smartphones and emerging 
location-based services (LBSs). LBS providers can effectively obtain user locations by GPS 
sensors as well as users’ activities by various sensors [1][2] and specific applications 
(microblogs, tweets, etc.). LBS providers collect a large quantity of data for further use, such 
as point of interest (POI) recommendations and advertisements. Additionally, people are 
paying increasing attention to the big data collected by traditional smart card systems, which 
are most widely used in campuses and transportation systems. The locations and implicit 
activity information in the data are helpful for various data mining tasks, such as analysis of 
lifestyles and some personalized services. 

In the real world, human trajectory data and activity information collected by an 
organization needs to be published to other organizations for various reasons, such as 
scientific research and administrative regulations [3]. Since raw data usually contain 
individual sensitive information, publishing such data may result in privacy leakage, which 
has a negative effect on both data publishers and users. Ensuring that the published data 
remain useful in practice while protecting individual privacy is quite challenging and thus 
attracts increasing attention [4]. 

Trajectory data are quite different from relational data, as studied in privacy-preserving data 
publishing (PPDP) [5]. The dependence between consecutive records may be exploited by 
potential adversaries to infer users’ privacy. Furthermore, the attached activities may be 
considered sensitive by users and they should also be considered in privacy preservation 
mechanisms [6]. Many studies have been conducted to study privacy-preserving trajectory 
data publishing [3][7], but these approaches do not consider activity information or ignore the 
dependence between data and therefore cannot be applied for publishing activity trajectories. 

Therefore, we study the problem of privacy-preserving activity trajectories publishing 
(PPATP) and propose S-PPATP, a solution to PPATP. S-PPATP consists of three steps. First, 
we formulate the problem by making necessary assumptions and defining appropriate 
parameters. Second, we devise privacy checking algorithms to guarantee that the published 
data satisfy the privacy requirement and optimize the data quality. Finally, we adjust the 
algorithms to meet practical requirements. In summary, we make the following contributions: 
 Study PPATP. The difference between PPATP and the previous data publishing 

problems lies in the fact that the data contain users’ activity information. To solve this 
problem, we propose a three-step solution, S-PPATP, which involves modeling, 
algorithm design and algorithm adjustment. 

 Formulate PPATP from the aspects of privacy requirements, user and adversary 
behavior modeling and data quality metrics. In user behavior modeling, we propose an 
extended topic model for parameter learning in the hidden Markov model (Section 3). 

 Propose two data publishing algorithms (PAs), PA-Markov and PA-HMM, for 
different user models. We prove that the algorithms both satisfy privacy requirements 
and optimize utility to some extent. We show that both algorithms use polynomial 
running time. Then, we propose several techniques to speed up the algorithms for 
better practical use (Section 4). 

 Evaluate PA-Markov and PA-HMM on simulated and real-world datasets. The results 
show that both algorithms preserve privacy. We also test utility and discuss the 
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privacy-utility tradeoff that data publishers may face in real-world scenarios (Section 
5). 

2. Problem Statement 
Trajectories consist of a sequence of geospatial points with timestamps. However, people 
would like to conduct activities when staying at a place of interest. Here, we follow the 
semantics of activity defined in [8]. 

Definition 1 (Activity): An activity  𝛼𝛼 ∈ 𝔸𝔸  represents a type of human action that an 
individual can take, such as working and eating. 𝔸𝔸 is a finite set that contains all the activities 
that can be performed by the users. 

Activity information is similar to location semantic information, which is studied in [6], 
since location semantic information indicates what a person does in a place. However, an 
activity is not limited to a location semantic. For example, a student may post a tweet at a 
restaurant in addition to eating. In other words, here, activity is a more general concept than 
location semantic information. Location, timestamp and corresponding activity together make 
up an event about a given user. 

Definition 2 (Event): Event 𝑒𝑒 is a triple that includes activity information as well as when 
and where the user performs this activity, i.e., 𝑒𝑒 = ⟨𝛼𝛼, 𝑡𝑡, 𝑙𝑙⟩, where 𝛼𝛼 ∈ 𝔸𝔸, 𝑡𝑡 ∈ 𝕋𝕋, 𝑙𝑙 ∈ 𝕃𝕃, 𝑒𝑒 ∈
𝔼𝔼 = 𝔸𝔸 × 𝕋𝕋 × 𝕃𝕃, 𝔸𝔸,𝕋𝕋,𝕃𝕃 are predefined vocabulary of activity, time and location. 

The granularity of the timestamp should be specified (e.g. hourly or every half day), and its 
legal values make up a finite set. Location and activity should be also finite variables. An event 
acts as a record in the dataset which may contain many records for a given user. 

Definition 3 (Activity Trajectory): An activity trajectory 𝛤𝛤 is a chronological sequence of 
events on a user, i.e., 𝛤𝛤 = {𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑛𝑛}, where it is subject to 𝑒𝑒1. 𝑡𝑡 ≤ 𝑒𝑒2. 𝑡𝑡 ≤ ⋯ ≤ 𝑒𝑒𝑛𝑛. 𝑡𝑡. 

Tables 1 and 2 are examples of dataset and activity trajectories. 
 

Table 1. A sample of datasets 
UserID Location Time Activity 
001 hotel 2017/3/9 7:07:20 having breakfast 
002 factory 2017/3/9 8:35:11 working 
001 center avenue 2017/3/9 9:45:53 riding a bike 
002 McDonald’s 2017/3/9 11:45:15 having lunch 
001 Pizza Hut 2017/3/9 12:05:24 having lunch 
002 swimming pool 2017/3/9 14:45:30 swimming 
001 hospital 2017/3/9 16:37:44 seeing a doctor 
002 hotel 2017/3/9 17:56:33 having dinner 

 
Table 2. Activity trajectories of user 001 and 002 

User Activity trajectories 
001 (having breakfast, 7:07:20, hotel) → (riding a bike, 9:45:53, center avenue) → (having lunch, 

12:05:24, Pizza Hut) → (seeing a doctor, 16:37:44, hospital)  
002 (working, 8:35:11, factory) → (having lunch, 11:45:15, McDonald’s) → (swimming, 14:45:30, 

swimming pool) → (having dinner, 17:56:33, hotel) 
 
In the real world, activity trajectories collected by an organization need to be published to 

other organizations for various reasons. For example, the transit data collected by smart card 
automated fare collection systems in transportation systems may be shared due to 
administrative regulations or profit sharing [3]. A typical scenario for data publishing is 
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described in Fig. 1. The data publisher collects data from the data generators or users and 
releases the collected data to a data miner or the public (e.g., on the Internet) who is called the 
data recipient. The data recipient will then use the published data for scientific research or 
other purposes. For example, an LBS provider collects its application users’ check-ins and 
releases them to a scientific research organization to improve the recommendation algorithm 
in their application. In this case, the LBS provider is the data publisher, the application users 
are the data generators, and the public is the data recipient. 
 

 
Fig. 1. A typical scenario of data publishing 

 

 
Fig. 2. Three tasks in PPATP 

 
Activity trajectory data publishing benefits scientific research and helps to improve user 

experiences, but the individual sensitive information in raw data raises serious privacy 
concerns. For example, many people consider hospital as a sensitive location since it implies 
that he/she is ill. Additionally, sensitive information usually varies from person to person. For 
example, a hospital may be sensitive for a patient but may not be as sensitive to a doctor. 
Therefore, it is necessary to answer the following question: To preserve user privacy, what 
data can be published, and what data should be suppressed?  

Fig. 2 illustrates the problem we want to solve and indicates the relationship between 
different tasks and roles. Overall, there are three tasks in PPATP. The first task helps to 
formulate the problem. Specifically, the following aspects should be covered. 
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 What is privacy, and to what extent should it be preserved (privacy requirement)? 
 How powerful is the adversary (adversary model)? The adversary’s background 

knowledge and reasoning methods have a substantial influence on the privacy 
preservation mechanism and thus should be well defined. 

 Can user behaviors be modeled (user behavior modeling)? Everyone has his/her own 
living habits. If the adversary is a person who has knowledge of the user’s habits (e.g., 
a friend or relative), he/she may utilize the behavior patterns to infer privacy. 

 How should the published data be evaluated (data quality metric)? Activity trajectories 
are published for certain usage. To preserve user privacy, the published data will 
definitely be less useful than the raw data. It is important to consider to what extent the 
usefulness is affected, and therefore, a data quality metric is necessary. 

The second task is designing a publishing algorithm based on the above modeling. The 
publishing algorithm should not only satisfy the privacy requirement but also ensure the data 
value. The last task is adjusting the publishing algorithm to meet practical needs, including 
how the publishing algorithm is implemented and how the parameters are selected. 

We thus propose a solution to PPATP, S-PPATP, which is shown in Fig. 3. This solution 
consists of three steps corresponding to the three tasks in PPATP. First, we build models for 
the users and the adversary, define the privacy requirement and propose a utility function to 
measure the published data quality. Second, we propose two data publishing algorithms that 
satisfy the privacy requirement and optimize the utility function. Last, we conduct extensive 
experiments to elucidate how the publishing algorithms should be adjusted. We discuss the 
three steps in S-PPATP in detail in the following sections. 

 

 
Fig. 3. Framework of S-PPATP 

3. Modeling 

3.1 Privacy requirement 
Given user 𝑢𝑢  with user model 𝑀𝑀  and event space 𝔼𝔼, the user is required to declare the 
information he/she does not want to publish. Sensitive information could be a location, a 
timestamp or an activity. For example, it is not good for an employee to let his/her boss know 
that he/she is on vacation because it implies that the employee is absent from work. In this case, 
the sensitive information to the employee is activity information (traveling) . Formally, a 
sensitive set 𝑆𝑆 ⊂ 𝔸𝔸 ∪ 𝕋𝕋 ∪ 𝕃𝕃 is identified for each user. 

Informally, if the adversary gets no more knowledge about the sensitive information of 𝑢𝑢 
after accessing the published activity trajectory, we say it preserves the privacy of user 𝑢𝑢. Here, 
we apply the probabilistic attack model [5], which aims to achieve the uninformative principle 
[9]. Under this principle, the posterior probability of each type of sensitive information at 
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every sampling point is not much larger than the prior probability. Here, we apply 𝛿𝛿-𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
[7] and extend its semantics by also regarding activity and timestamp as possible sensitive 
information. 

Definition 4 (𝛿𝛿-𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝): For an publishing algorithm 𝒜𝒜, it preserves 𝛿𝛿-𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 if for all 
possible input activity trajectories generated from user model 𝑀𝑀, for all possible output 𝑂𝑂 and 
all types of sensitive information 𝑠𝑠 ∈ 𝑆𝑆 
 𝑃𝑃[𝑒𝑒𝑖𝑖. 𝑥𝑥 = 𝑠𝑠|𝑂𝑂] − 𝑃𝑃[𝑒𝑒𝑖𝑖 . 𝑥𝑥 = 𝑠𝑠] ≤ 𝛿𝛿  (1) 
where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑥𝑥 ∈ {𝑎𝑎, 𝑡𝑡, 𝑙𝑙} is the type of 𝑠𝑠. 

Publishing lgorithm 𝒜𝒜  checks each event of the given user and determine whether to 
publish or suppress it. If the decision is “publish”, 𝒜𝒜 produces the event. If the decision is 
“suppress”, 𝒜𝒜 produces “NIL”. In real-world applications, if the decision of an event is “NIL”, 
the data should be replaced by “Unknown” or other default values. 

We say the user’s privacy is breached at position 𝑖𝑖 of some output 𝑂𝑂 if ∃𝑠𝑠 ∈ 𝑆𝑆,𝑃𝑃[𝑒𝑒𝑖𝑖. 𝑥𝑥 =
𝑠𝑠|𝑂𝑂] − 𝑃𝑃[𝑒𝑒𝑖𝑖. 𝑥𝑥 = 𝑠𝑠] > 𝛿𝛿, where 𝑥𝑥 is an element of event. To measure the extent to which the 
privacy is breached in a dataset, we define 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. Assume that dataset 𝐷𝐷 consists of 
data from 𝑈𝑈 users. The breach rate refers to the ratio of events where the privacy is breached, 
i.e., 
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐷𝐷) = 1

𝑈𝑈
∑ |{𝑖𝑖|𝑃𝑃[𝑒𝑒𝑖𝑖.𝑥𝑥=𝑠𝑠|𝐷𝐷]−𝑃𝑃[𝑒𝑒𝑖𝑖.𝑥𝑥=𝑠𝑠]>𝛿𝛿}|

𝑛𝑛𝑢𝑢  (2) 
In the following, the breach rate of algorithm 𝒜𝒜 refers to the breach rate of 𝒜𝒜’s output dataset. 

3.2 Data quality 
Intuitively, if we always suppress the whole activity trajectory, the privacy would never be 
breached, which does not make sense since nothing is published. The more truthful data is 
published, the more useful the dataset is. We measure the quality of a dataset 𝐷𝐷 by defining the 
utility as the expected fraction of truthful events in the output activity trajectory. 
 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(D) = E(Fraction of truthful events) (3) 

3.3 User model 
Despite different lifestyles, a deep-rooted regularity is hidden behind human daily behaviors 
[10]. Since it has been proven that the Markov chain is useful in modeling human behavior 
patterns [11], we utilize two optional models to describe user behaviors: a Markov-based 
model and an HMM-based model. 

3.3.1 Markov-based model 
We use a Markov model to characterize individual behavior patterns. Specifically, we regard 
an activity trajectory 𝛤𝛤 as three independent sequences: activity sequence (A), time sequence 
(T) and location sequence (L). The sequences are generated from Markov chains 
𝑀𝑀𝑎𝑎 ,𝑀𝑀𝑡𝑡, and 𝑀𝑀𝑙𝑙, respectively. According to the property of Markov chain, the current state 
only depends on the the previous state, i.e., 
 𝑃𝑃[𝑥𝑥_𝑖𝑖│𝑥𝑥_1, 𝑥𝑥_2,⋯ , 𝑥𝑥_(𝑖𝑖 − 1) ] = 𝑃𝑃[𝑥𝑥_𝑖𝑖│𝑥𝑥_(𝑖𝑖 − 1) ],2 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑥𝑥 ∈ {𝑎𝑎, 𝑡𝑡, 𝑙𝑙} (4) 

3.3.2 HMM-based model 
Diverse human behaviors sometimes share something in common. For example, some people 
go to a restaurant for breakfast, while others may go to the bakery or make other choices. 
Nevertheless, all of these actions imply the same topic: having breakfast. Such hidden topic 
usually cannot be explicitly observed from the data. The HMM is suitable for this situation 
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where a latent variable exists. A typical HMM model is defined by initial state distribution (𝜋𝜋), 
transition probabilities (𝑇𝑇𝑇𝑇) and emission probabilities (𝐵𝐵). 𝜋𝜋 and 𝑇𝑇𝑇𝑇 determine the state 
sequence, which indicates individual behavior patterns and cannot be observed. 𝐵𝐵 determines 
the observation sequence that corresponds to a user’s activity trajectory. 

In the HMM, the space of hidden states is usually much smaller than the space of 
observation variables. Therefore, dimension reduction must be leveraged for modeling. Here, 
we resort to topic modeling [12], which extracts a set of common “topics” from activity 
trajectories. Drawing an analogy, activity trajectories can be regarded as documents, and 
events can be regarded as words. Thus, topics can be explained as users’ behavior patterns. For 
example, eating and entertainment after work could be two topics. In the former topic, words 
such as {8:00, having a bill, McDonald’s} may appear. In the latter topic, words such as 
{18:40, watching TV, home} may appear. In other words, topic models reduce the complexity 
of activity trajectories by providing an interpretable low-dimensional representation. 

A typical implementation of topic model is latent Dirichlet allocation (LDA). However, 
LDA does not consider word dependence . Although topic constraint of the same sentence can 
be added to LDA [13], the topics of different sentences are still independent so the method 
does not fit our situation. Therefore, we extend LDA to incorporate topic transition behind 
consecutive words to capture the temporal dependence between consecutive events which is 
common in daily lives. For instance, people usually start working after breakfast and watch 
TV after dinner. These correlations reflect people’s regularity in daily life. 

The samples can be generated by the following process: 
1. For each document 𝑢𝑢 ∈ {1,2,⋯ ,𝑈𝑈} and topic 𝑘𝑘 ∈ {1,2,⋯ ,𝐾𝐾}, draw 𝜃𝜃𝑢𝑢,𝑘𝑘 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼𝑘𝑘). 
2. For each topic 𝑘𝑘 ∈ {1,2,⋯ ,𝐾𝐾} , draw 𝜙𝜙𝑘𝑘,𝑡𝑡 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷(𝛽𝛽𝑡𝑡) , 𝜙𝜙𝑘𝑘,𝑎𝑎 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷(𝛽𝛽𝑎𝑎) , and 𝜙𝜙𝑘𝑘,𝑙𝑙 ∼
𝐷𝐷𝐷𝐷𝐷𝐷(𝛽𝛽𝑙𝑙). 

3. For each word 𝑤𝑤𝑖𝑖 ∈ 𝑢𝑢 , draw topic 𝑧𝑧𝑢𝑢,𝑖𝑖 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝜃𝜃𝑢𝑢,𝑧𝑧𝑢𝑢,𝑖𝑖−1� , time 𝑡𝑡𝑢𝑢,𝑖𝑖 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝜙𝜙𝑧𝑧𝑢𝑢,𝑖𝑖,𝑡𝑡� , 
activity 𝑎𝑎𝑢𝑢,𝑖𝑖 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝜙𝜙𝑧𝑧𝑢𝑢,𝑖𝑖,𝑎𝑎� and location 𝑙𝑙𝑢𝑢,𝑖𝑖 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜙𝜙𝑧𝑧𝑢𝑢,𝑖𝑖,𝑙𝑙). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝐷𝐷𝐷𝐷𝐷𝐷 represent multinomial distributions and Dirichlet distributions, respectively. 
𝜃𝜃 is a distribution over topics for a document. 𝜙𝜙𝑘𝑘 is a discrete distribution over time, activity 
or location of topic 𝑘𝑘. 𝛼𝛼 and 𝛽𝛽 are hyperparameters for Dirichlet distributions. 

For parameter learning, it is intractable to optimize the log-likelihood of observed samples, 
as analyzed in [12]. There are many approximation algorithms to solve this problem, such as 
variational expectation-maximization (EM) and Gibbs sampling. Due to the easier derivation 
of Gibbs sampling, we also use Gibbs sampling for approximation inference. Gibbs sampling 
is one method of Markov chain Monte Carlo, which approximates the posterior distribution 
over topic sequence 𝑃𝑃(𝐳𝐳|𝑎𝑎1:𝑛𝑛, 𝑡𝑡1:𝑛𝑛, 𝑙𝑙1:𝑛𝑛) , with an activity trajectory of length 𝑛𝑛 . Gibbs 
sampling samples the topic 𝑧𝑧𝑖𝑖 of a word 𝑖𝑖, i.e., the pair ⟨𝑎𝑎𝑖𝑖, 𝑡𝑡𝑖𝑖 , 𝑙𝑙𝑖𝑖⟩ conditioned on all the other 
words given and iteratively samples the topic of every word until convergence. Particularly, 
the following posterior probability is used to sample the topic 𝑧𝑧𝑖𝑖 of the word  : 

 
𝑃𝑃�𝑧𝑧𝑖𝑖�𝐳𝐳−𝑖𝑖,𝑎𝑎1:𝑛𝑛, 𝑡𝑡1:𝑛𝑛, 𝑙𝑙1:𝑛𝑛� ∝ 𝑃𝑃�𝑧𝑧𝑖𝑖�𝐳𝐳−𝑖𝑖,𝛼𝛼� ⋅ 𝑃𝑃�𝑡𝑡𝑖𝑖�𝑧𝑧𝑖𝑖, 𝑡𝑡1:𝑛𝑛

−𝑖𝑖 , 𝐳𝐳−𝑖𝑖,𝛽𝛽𝑡𝑡�
⋅  𝑃𝑃�𝑎𝑎𝑖𝑖�𝑧𝑧𝑖𝑖 ,𝑎𝑎1:𝑛𝑛

−𝑖𝑖 , 𝐳𝐳−𝑖𝑖,𝛽𝛽𝑎𝑎� ⋅  𝑃𝑃�𝑙𝑙𝑖𝑖�𝑧𝑧𝑖𝑖 , 𝑙𝑙1:𝑛𝑛
−𝑖𝑖 , 𝐳𝐳−𝑖𝑖,𝛽𝛽𝑙𝑙�

 (5) 

where superscript −𝑖𝑖 means ignoring the 𝑖𝑖th token. Considering topic transition, the topic of 
the 𝑖𝑖th sample 𝑧𝑧𝑖𝑖  depends on both the multinomial parameter and the previous topic 𝑧𝑧𝑖𝑖−1. 
Therefore, the first term on the right side of ∝ is: 

 𝑃𝑃�𝑧𝑧𝑖𝑖�𝐳𝐳−𝑖𝑖,𝛼𝛼� ∝
𝑛𝑛𝑧𝑧𝑖𝑖−1,𝑧𝑧𝑖𝑖
𝑢𝑢 +𝛼𝛼

𝑛𝑛𝑧𝑧𝑖𝑖−1
𝑢𝑢 +𝐾𝐾𝐾𝐾

𝑛𝑛𝑧𝑧𝑖𝑖,𝑧𝑧𝑖𝑖+1
𝑢𝑢 +𝐼𝐼(𝑧𝑧𝑖𝑖−1=𝑧𝑧𝑖𝑖=𝑧𝑧𝑖𝑖+1)+𝛼𝛼

𝑛𝑛𝑧𝑧𝑖𝑖
𝑢𝑢 +𝐼𝐼(𝑧𝑧𝑖𝑖−1=𝑧𝑧𝑖𝑖)+𝐾𝐾𝐾𝐾

 (6) 
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where 𝐾𝐾 is the number of topics. The second term on the right side of ∝ in (6) adjusts the 
transition count from 𝑧𝑧𝑖𝑖−1 to 𝑧𝑧𝑖𝑖 since 𝑧𝑧𝑖𝑖 is excluded. The other terms in (5) can be calculated 
using the following probabilities: 
 𝑃𝑃�𝑡𝑡𝑖𝑖�𝑧𝑧𝑖𝑖 , 𝑡𝑡1:𝑛𝑛

−𝑖𝑖 , 𝐳𝐳−𝑖𝑖,𝛽𝛽𝑡𝑡� ∝
𝑛𝑛𝑧𝑧𝑖𝑖,𝑡𝑡𝑖𝑖+𝛽𝛽𝑡𝑡
𝑛𝑛𝑧𝑧𝑖𝑖+𝑇𝑇𝛽𝛽𝑡𝑡

 (7) 

 𝑃𝑃�𝑎𝑎𝑖𝑖�𝑧𝑧𝑖𝑖 ,𝑎𝑎1:𝑛𝑛
−𝑖𝑖 , 𝐳𝐳−𝑖𝑖,𝛽𝛽𝑎𝑎� ∝

𝑛𝑛𝑧𝑧𝑖𝑖,𝑎𝑎𝑖𝑖+𝛽𝛽𝑎𝑎
𝑛𝑛𝑧𝑧𝑖𝑖+𝐴𝐴𝛽𝛽𝑎𝑎

 (8) 

 𝑃𝑃[𝑙𝑙_𝑖𝑖│𝑧𝑧_𝑖𝑖, 𝑙𝑙_(1:𝑛𝑛)^(−𝑖𝑖), 𝐳𝐳^(−𝑖𝑖),𝛽𝛽_𝑙𝑙 ] ∝ (𝑛𝑛_(𝑧𝑧_𝑖𝑖, 𝑙𝑙_𝑖𝑖) + 𝛽𝛽_𝑙𝑙)/(𝑛𝑛_(𝑧𝑧_𝑖𝑖) + 𝐿𝐿𝐿𝐿_𝑙𝑙) (9) 
where 𝑇𝑇,𝐴𝐴 and 𝐿𝐿 represent the vocabulary size of time, location and activity, respectively. 
The above sampling is performed iteratively until the sampling result change little. Then, we 
can estimate the document-specific topic distribution 
 𝑝𝑝[𝑘𝑘|𝑢𝑢] = 𝑛𝑛𝑘𝑘

𝑢𝑢+𝛼𝛼
∑ � 𝑛𝑛𝑘𝑘

𝑢𝑢+𝛼𝛼�𝑘𝑘
 (10) 

and topic-specific vocabulary distribution 
 𝜙𝜙𝑘𝑘,𝑤𝑤 = 𝑛𝑛k,w+βw

∑ � nk,w+β𝑤𝑤�w
,𝑤𝑤 ∈ ⟨𝑡𝑡,𝑎𝑎, 𝑙𝑙⟩ (11) 

and the topic transition probability of each user 

 𝑝𝑝[𝑧𝑧𝑖𝑖|𝑧𝑧𝑖𝑖−1,𝑢𝑢] =
𝑛𝑛𝑧𝑧𝑖𝑖−1,𝑧𝑧𝑖𝑖
𝑢𝑢 +𝛼𝛼

𝑛𝑛𝑧𝑧𝑖𝑖−1
𝑢𝑢 +𝐾𝐾𝐾𝐾

 (12) 

The output distributions of Gibbs sampling act as the three basic parameters of a HMM, i.e., 
state transition probability (𝑝𝑝[𝑧𝑧𝑖𝑖|𝑧𝑧𝑖𝑖−1,𝑢𝑢] ), emission probability (𝜙𝜙𝑘𝑘,𝑤𝑤 ) and prior state 
distribution (𝑝𝑝[𝑘𝑘|𝑢𝑢]) for all 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛,𝑘𝑘 ∈ 𝔼𝔼, 𝑗𝑗 ∈ 𝔼𝔼. 

3.4 Adversary model 
We study a powerful adversary who accesses the whole published dataset and owns two types 
of background knowledge. 1) User model. It means that the adversary knows well about the 
users’ habits. 2) Publishing algorithm. Such an adversary knows when sensitive information is 
suppressed in the algorithm and can infer users’ privacy from the additional information 
leaked by the suppression rules. 

This type of adversary exists in our daily lives, e.g. our close friends, because an 
individual’s behavior patterns can be easily learned by his/her close friends. Bayesian 
inference can be used by the adversary to infer sensitive information. Given a user model 𝑀𝑀, 
the adversary estimates the prior probability of the sensitive information at each position, i.e., 
𝑃𝑃[𝑒𝑒𝑖𝑖. 𝑥𝑥 = 𝑠𝑠](1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑥𝑥 ∈ {𝑎𝑎, 𝑡𝑡, 𝑙𝑙}, 𝑠𝑠 ∈ 𝑆𝑆). Upon observing a published activity trajectory 𝑂𝑂, 
the adversary updates his/her inference by computing the posterior probability. 

One technique an adversary can use to infer sensitive information is by event dependence. 
There are two types of dependence: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 dependence and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 dependence, or the 
correlation between consecutive events and among the information inside an event. For 
example, if 𝑙𝑙 is a sensitive location to user 𝑢𝑢 where he/she usually goes after lunch on Monday, 
then it makes no sense to merely suppress “go to  𝑙𝑙 on Monday afternoon” because this event 
can be inferred using the dependence from the lunch event. In this case, the adversary infers 
sensitive information by external dependence. For another example, assume user 𝑣𝑣 usually 
goes to 𝑙𝑙′ for drugs; then, merely suppressing the activity “taking drugs” makes no sense if the 
adversary knows the correlation between  𝑙𝑙′ and drugs. In this case, the adversary infers 
sensitive information by internal dependence. 

Another technique for inferring is usage of the privacy-preserving mechanism. Sometimes 
“suppression” implies “publishing”. For instance, government officials are not allowed to 
enter casino for gambling. Consider a publishing algorithm tries to preserve this privacy by 
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suppressing the event if and only if it contains “gambling” activity. When the adversary 
observes an activity suppression, he/she will infer easily the privacy due to his/her knowledge 
of the suppression rule. 

4. Privacy-preserving Algorithms for Publishing Activity Trajectories 

4.1 Algorithm for the Markov-based model 
The pseudocode of the publishing algorithm for the Markov-based model (PA-Markov) is 
shown in Algorithm 1. For the four input of PA-Markov, 𝛤𝛤 can be extracted from the raw 
dataset. 𝛿𝛿  and 𝑆𝑆  are provided by data publishers or users. 𝑀𝑀  is learned from the user’s 
historical records. PA-Markov finally outputs a modified activity trajectory 𝑂𝑂 , which 
preserves 𝛿𝛿-privacy. When PA-Markov is executed on all users, the whole dataset is published. 
Here, we assume that activity trajectory of each user is independent. In other words, the 
adversary cannot infer a user’s privacy with the help of other users’ activity trajectories. 

At each position 𝑖𝑖, PA-Markov first checks external dependence by 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 and 
then internal dependence by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 . Procedures of 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒  and 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 are shown in Algorithm 2 and 3. Given a position 𝑖𝑖 and current temporary 
output 𝑂𝑂, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 outputs true if and only if for all the possible values at position 𝑖𝑖 
and all the possible values in 𝑆𝑆, publishing the information will not breach 𝛿𝛿-privacy. 

Probability estimation of sensitive information is the key steps of 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒. Prior 
probability can be computed by: 
 𝑃𝑃�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠� = �𝑏𝑏�⃗ ′𝑇𝑇𝑗𝑗−1�𝑠𝑠 (13) 
where 𝑥𝑥 ∈ {𝑎𝑎, 𝑡𝑡, 𝑙𝑙} and 𝑏𝑏�⃗  is the initial distribution of 𝑥𝑥, 𝑇𝑇 is the one-step transition matrix of 𝑀𝑀, 
and subscript 𝑠𝑠 means the position where the information is 𝑠𝑠. 

For the posterior probability, 𝑃𝑃[𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠|⟨𝑂𝑂,𝑦𝑦⟩], we consider a temporary output 𝑂𝑂 =
⟨𝑜𝑜1,𝑜𝑜2,⋯ , 𝑜𝑜𝑖𝑖⟩ . Let 𝑗𝑗′  be the last position before or at position 𝑗𝑗  at which an event was 
published. Let 𝑗𝑗″ be the first position after position 𝑗𝑗 at which an event was published. If no 
such position exists, then 𝑗𝑗″ = 𝑛𝑛 + 1. It was proven in [14] that: 
 𝑃𝑃�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠�⟨𝑂𝑂,𝑦𝑦⟩� = 𝑃𝑃�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠�𝑒𝑒𝑗𝑗′ . 𝑥𝑥 = 𝑜𝑜𝑗𝑗′ , 𝑒𝑒𝑗𝑗″ . 𝑥𝑥 = 𝑜𝑜𝑗𝑗″� (14) 
Using Markov assumption of the activity trajectory, the probability in (14) is: 

 
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑒𝑒�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠�⟨𝑂𝑂,𝑦𝑦⟩� = 𝑃𝑃�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠�𝑒𝑒𝑗𝑗′ . 𝑥𝑥 = 𝑜𝑜𝑗𝑗′ , 𝑒𝑒𝑗𝑗″ . 𝑥𝑥 = 𝑜𝑜𝑗𝑗″�

=
𝑃𝑃�𝑒𝑒𝑗𝑗″ .𝑥𝑥=𝑜𝑜𝑗𝑗″�𝑒𝑒𝑗𝑗.𝑥𝑥=𝑠𝑠�𝑃𝑃�𝑒𝑒𝑗𝑗.𝑥𝑥=𝑠𝑠�𝑒𝑒𝑗𝑗′ .𝑥𝑥=𝑜𝑜𝑗𝑗′�

𝑃𝑃�𝑒𝑒𝑗𝑗″ .𝑥𝑥=𝑜𝑜𝑗𝑗″�𝑒𝑒𝑗𝑗′ .𝑥𝑥=𝑜𝑜𝑗𝑗′�

 (15) 

Here, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 checks complete value set in case of leaking additional information 
because the adversary knows the publishing algorithm. For example, if 𝑒𝑒𝑛𝑛−1 is published but 
𝑒𝑒𝑛𝑛 is suppressed, the adversary can infer that 𝑒𝑒𝑛𝑛 contains sensitive information based on (14). 
The complete value set at position 𝑖𝑖 is determined by 𝑀𝑀, starting from the nearest position 
before 𝑖𝑖 where the true data is published. Specifically, assume 𝑖𝑖′ is the nearest position where 
the output≠NIL; we can get 𝑃𝑃[𝑥𝑥𝑖𝑖|𝑥𝑥𝑖𝑖′] by 𝑖𝑖 − 𝑖𝑖′ steps of transition. 

After checking the external dependence of a given activity trajectory, PA-Markov start to 
check the internal dependence. Here, we resort to the concept of frequent pattern mining. We 
define the posterior probability of sensitive information 𝑠𝑠 given another information 𝑦𝑦0 as the 
confidence of rule: 𝑒𝑒.𝑦𝑦 = 𝑦𝑦0 ⇒ 𝑒𝑒. 𝑥𝑥 = 𝑠𝑠, i.e., 
 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖[𝑒𝑒. 𝑥𝑥 = 𝑠𝑠|𝑒𝑒. 𝑦𝑦 = 𝑦𝑦0] = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒.𝑦𝑦 = 𝑦𝑦0 ⇒ 𝑒𝑒. 𝑥𝑥 = 𝑠𝑠) = |{𝑒𝑒|𝑒𝑒.𝑥𝑥=𝑠𝑠,𝑒𝑒.𝑦𝑦=𝑦𝑦0}|

|{𝑒𝑒|𝑒𝑒.𝑦𝑦=𝑦𝑦0}|  (16) 
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As shown in Algorithm 3, given an event 𝑒𝑒, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 will check each component of 
𝑒𝑒 that is not 𝑁𝑁𝑁𝑁𝑁𝑁. During each check, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 iterates on all the sensitive information 
in 𝑆𝑆  to compute the posterior probability. If for some 𝑠𝑠 ∈ 𝑆𝑆 , the posterior probability 
𝑃𝑃[𝑒𝑒. 𝑥𝑥 = 𝑠𝑠|𝑒𝑒. 𝑦𝑦] is 𝛿𝛿  larger than the prior probability 𝑃𝑃[𝑒𝑒. 𝑥𝑥 = 𝑠𝑠], then 𝑒𝑒.𝑦𝑦  is suppressed, 
where 𝑦𝑦 ∈ {𝑎𝑎, 𝑡𝑡, 𝑙𝑙}. Thus, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ensures that for all the sensitive information 𝑠𝑠 ∈ 𝑆𝑆, 
all the posterior probability 𝑃𝑃[𝑒𝑒. 𝑥𝑥 = 𝑠𝑠| ⋅] is no 𝛿𝛿 larger than the prior probability 𝑃𝑃[𝑒𝑒. 𝑥𝑥 = 𝑠𝑠], 
which preserves 𝛿𝛿-privacy. Additionally, publishing or suppressing data in 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 
does not breach the result of 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 since we do not use the current event for external 
dependence check in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒. 

Proposition 1: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 preserves 𝛿𝛿-privacy in Definition 4. 
Proof: We consider that user 𝑢𝑢 has a sensitive set 𝑆𝑆 and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 produces 𝑂𝑂. At 

any position 𝑗𝑗, we consider two cases: 1) If 𝑗𝑗″ ≤ 𝑛𝑛, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ensures that the posterior 
probability is not 𝛿𝛿  larger than the prior probability, so it publishes 𝑒𝑒𝑗𝑗″. 𝑥𝑥 . After 𝑒𝑒𝑗𝑗″  is 
published, whether the events after 𝑒𝑒𝑗𝑗″. 𝑥𝑥 in 𝛤𝛤 are published or suppressed has no influence on 
the posterior probability according to (14). Thus, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 preserves 𝛿𝛿-privacy until 
termination of the algorithm. 2) If 𝑗𝑗″ = 𝑛𝑛 + 1, consider how 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 works when 
publishing 𝑒𝑒𝑗𝑗′. 𝑥𝑥 . 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑒𝑒𝑒𝑒𝑒𝑒  deciding to publish 𝑒𝑒𝑗𝑗′.𝑥𝑥  implies that the posterior 
probability of 𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠 is not 𝛿𝛿 larger than the prior probability given 𝑗𝑗″ = 𝑛𝑛 + 1 during the 
check. 

Since both 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 preserve 𝛿𝛿-privacy, we have Proposition 2. 
Proposition 2: PA-Markov preserves 𝛿𝛿-privacy in Definition 4. 

Algorithm 1 Publishing Algorithm for Markov-based model 
Input: privacy requirement 𝛿𝛿, user model M, sensitive set S, activity trajectory 𝛤𝛤 
Output: activity trajectory O which preserves 𝛿𝛿-privacy 
1: 𝑂𝑂 ← ∅; 
2: for i = 1 → n do 
3:     e ← the ith event in 𝛤𝛤; 𝑒𝑒′ ← 𝑒𝑒; 
4:     if externalCheck(𝛿𝛿,𝑀𝑀𝑎𝑎, 𝑖𝑖,𝑂𝑂𝑎𝑎, 𝑆𝑆) == false then 𝑒𝑒′. 𝑎𝑎 ←  NIL; 
5:     end if 
6:     if externalCheck(𝛿𝛿,𝑀𝑀𝑡𝑡 , 𝑖𝑖,𝑂𝑂𝑡𝑡 , 𝑆𝑆) == false then 𝑒𝑒′. 𝑡𝑡 ←  NIL; 
7:     end if 
8:     if externalCheck(𝛿𝛿,𝑀𝑀𝑙𝑙 , 𝑖𝑖,𝑂𝑂𝑙𝑙 , 𝑆𝑆) == false then 𝑒𝑒′. 𝑙𝑙 ←  NIL; 
9:     end if 
10:   internalCheck(𝑒𝑒′);  O ←  <𝑂𝑂, 𝑒𝑒′>; 
11: end for 
12: Publish generated activity trajectory O; 
13: return O; 

Algorithm 2 externalCheck 
Input: privacy requirement 𝛿𝛿, Markov model M, position i, current output O, sensitive set S 
Output: the ith information is published (true) or suppressed (false) 
1:   for each possible value 𝑦𝑦 do 
2:       for each 𝑠𝑠 ∈ 𝑆𝑆 do 
3:           for 𝑗𝑗 = 1 → 𝑛𝑛 do 
4:               Compute 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ← 𝑃𝑃[𝑒𝑒𝑗𝑗 . 𝑥𝑥 = 𝑠𝑠] and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑒𝑒 ← 𝑃𝑃[𝑒𝑒𝑗𝑗 . 𝑥𝑥 = 𝑠𝑠| < 𝑂𝑂,𝑦𝑦 >]; 
5:               if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑒𝑒 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 𝛿𝛿 then 
6:                   return false; 
7:               end if 
8:           end for 
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9:      end for 
10: end for 
11: return true; 

Algorithm 3 internalCheck 
Input: event 𝑒𝑒 
Output: 
1:   run componentCheck on each component of 𝑒𝑒; 
2:   return; 
3: 
4:   procedure componentCheck(𝑒𝑒,𝑦𝑦) 
5:   if y ≠ NIL then 
6:       for each 𝑠𝑠 ∈ 𝑆𝑆 do 
7:           if 𝑝𝑝[𝑒𝑒. 𝑥𝑥 = 𝑠𝑠|𝑦𝑦] − 𝑝𝑝[𝑒𝑒. 𝑥𝑥 = 𝑠𝑠] > 𝛿𝛿 then 
8:              y ← NIL; break; 
9:          end if 
10:     end for 
11: end if 
12: return; 

4.2 Algorithm for HMM-based model 

We assign a probability 𝑝𝑝𝑖𝑖
𝑗𝑗  for each event 𝑖𝑖 with which 𝑖𝑖 is published at position 𝑗𝑗. With 

probability 1 − 𝑝𝑝𝑖𝑖
𝑗𝑗, event 𝑖𝑖 is suppressed at position 𝑗𝑗. We further define a publishing vector 𝒑𝒑 

containing all the publishing probabilities. Given the publishing vector 𝒑𝒑, our publishing 
algorithm outputs each event with its publishing probability in order. The pseudocode is 
shown in Algorithm 4. By defining the publishing probability, whether an output activity 
trajectory breaches 𝛿𝛿 −privacy can be checked using a publishing vector. The pseudocode is 
shown in Algorithm 5. If and only if 𝛿𝛿 −privacy is not breached at any position for all the 
sensitive information, the algorithm returns true. 

In 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒 , calculations of the prior and posterior probability of sensitive 
information are also crucial points. Prior probability can be computed by the Markov property. 
Assume we want to compute the prior probability of some sensitive information 𝑠𝑠 at position 
𝑖𝑖. The prior distribution of 𝑒𝑒𝑖𝑖 can be computed by 𝑖𝑖 − 1 step transition probability, i.e., 
 𝑃𝑃[𝑒𝑒𝑖𝑖 = 𝑒𝑒] = �𝜋𝜋𝜋𝜋𝑟𝑟𝑖𝑖−1𝐵𝐵�𝑒𝑒 (17) 
Then, the prior probability of 𝑠𝑠 can be computed by 
 𝑃𝑃[𝑒𝑒𝑖𝑖. 𝑥𝑥 = 𝑠𝑠] = ∑ � 𝜋𝜋𝜋𝜋𝑟𝑟𝑖𝑖−1𝐵𝐵�𝑒𝑒𝑒𝑒.𝑥𝑥=𝑠𝑠  (18) 

Computing posterior probability is more complex. Since an event will not be partially 
published in PA-HMM, there is no need to check internal dependence in particular. As each 
event has a publishing probability, the adversary cannot infer sensitive information from the 
original HMM. From the adversary’s point of view, the output is generated from a new HMM, 
i.e., 𝑀𝑀′ = (𝜋𝜋′,𝑇𝑇𝑇𝑇′,𝐵𝐵′). The initial state distribution and transition probabilities do not change, 
i.e., 𝜋𝜋′ = 𝜋𝜋,𝑇𝑇𝑇𝑇′ = 𝑇𝑇𝑇𝑇. However, emission probabilities, 𝐵𝐵′, are changed to 

 𝑏𝑏𝑖𝑖,𝑗𝑗′𝑘𝑘 = �
𝑏𝑏𝑖𝑖,𝑗𝑗𝑝𝑝𝑗𝑗𝑘𝑘 𝑗𝑗 ∈ 𝔼𝔼
1 − ∑ 𝑏𝑏𝑖𝑖,𝑙𝑙𝑝𝑝𝑙𝑙𝑘𝑘𝑙𝑙 𝑗𝑗 = 𝑁𝑁𝑁𝑁𝑁𝑁

, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 (19) 

According to (3) in [7], the distribution of latent state 𝑌𝑌 is 
 𝑃𝑃[𝑌𝑌𝑖𝑖 = 𝑦𝑦|𝑂𝑂] = 𝛼𝛼𝑦𝑦(𝑖𝑖)𝛽𝛽𝑦𝑦(𝑖𝑖)

∑ 𝛼𝛼𝑦𝑦′(𝑖𝑖)𝛽𝛽𝑦𝑦′(𝑖𝑖)𝑦𝑦′
, 1 ≤ 𝑦𝑦 ≤ 𝐾𝐾 (20) 

where 
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 𝛼𝛼𝑦𝑦(𝑖𝑖) = 𝑃𝑃[𝑌𝑌𝑖𝑖 = 𝑦𝑦, 𝑜𝑜1, 𝑜𝑜2,⋯ , 𝑜𝑜𝑖𝑖−1],  𝛽𝛽𝑦𝑦(𝑖𝑖) = 𝑃𝑃[𝑜𝑜𝑖𝑖, 𝑜𝑜𝑖𝑖+1,⋯ , 𝑜𝑜𝑛𝑛|𝑌𝑌𝑖𝑖 = 𝑦𝑦] (21) 
𝛼𝛼 and 𝛽𝛽 can be obtained by the forward-backward algorithm. Thus, we have 

 
𝑃𝑃[𝑒𝑒𝑖𝑖. 𝑥𝑥 = 𝑠𝑠|𝑂𝑂] = ∑ 𝑃𝑃[𝑌𝑌𝑖𝑖 = 𝑦𝑦|𝑂𝑂]𝑃𝑃[𝑒𝑒𝑖𝑖 . 𝑥𝑥 = 𝑠𝑠|𝑌𝑌𝑖𝑖 = 𝑦𝑦]𝑦𝑦

= ∑ 𝑃𝑃[𝑌𝑌𝑖𝑖 = 𝑦𝑦|𝑂𝑂]𝑦𝑦 ∙ ∑ 𝐼𝐼(𝑒𝑒. 𝑥𝑥 = 𝑠𝑠)𝑏𝑏𝑦𝑦,𝑒𝑒
′𝑖𝑖

𝑒𝑒
 (22) 

Algorithm 4 Publishing Algorithm for HMM-based model 
Input: privacy requirement 𝛿𝛿, user model M, sensitive set S, activity trajectory 𝛤𝛤 
Output: activity trajectory O which preserves 𝛿𝛿-privacy 
1: 𝑂𝑂 ← ∅;  𝒑𝒑 ← vectorSearch(𝛿𝛿,𝑀𝑀,𝑆𝑆); 
2: for 𝑖𝑖 = 1 → 𝑛𝑛 do 
3:     𝑒𝑒 ← NIL; With probability 𝑝𝑝𝑒𝑒𝑖𝑖

𝑖𝑖 , 𝑒𝑒 ← 𝑒𝑒𝑖𝑖;  𝑂𝑂 ← < 𝑂𝑂, 𝑒𝑒>; 
4: end for 
5: Publish O; 

Algorithm 5 privacyCheck 
Input: privacy requirement 𝛿𝛿, user model M, sensitive set S, publishing vector p 
Output: true or false 
1:   for each 𝑠𝑠 ∈ 𝑆𝑆 do 
2:           for 𝑖𝑖 = 1 → 𝑛𝑛 do 
3:               Compute prior probability 𝑃𝑃[𝑒𝑒𝑖𝑖 . 𝑥𝑥 = 𝑠𝑠]; 
4:               for all the possible activity trajectory O do 
5:                   Compute posterior probability 𝑃𝑃[𝑒𝑒𝑖𝑖 . 𝑥𝑥 = 𝑠𝑠|𝑂𝑂]; 
6:                   if 𝑃𝑃[𝑒𝑒𝑖𝑖 . 𝑥𝑥 = 𝑠𝑠|𝑂𝑂] − 𝑃𝑃[𝑒𝑒𝑖𝑖 . 𝑥𝑥 = 𝑠𝑠] > 𝛿𝛿 then 
7:                       return false; 
8:                   end if 
9:               end for 
10:         end for 
11:     end for 
12: return true; 

Obviously, if we increase the publishing probability, the utility will also increase. Our goal 
is to search the publishing vector that maximizes utility while preserving 𝛿𝛿 −privacy. 
However, privacyCheck is neither convex nor concave. We observe that if we decrease the 
publishing probability, we can certainly improve privacy. We say vector 𝐩𝐩 dominates 𝐪𝐪 if for 
all 𝑖𝑖, 𝑗𝑗,𝑝𝑝𝑖𝑖

𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖
𝑗𝑗. Then, we make the following proposition. 

Proposition 3: If 𝐩𝐩 preserves 𝛿𝛿-privacy, then so does any 𝐪𝐪 dominated by 𝐩𝐩. 
Proof: Our proof is quite similar to the proof of the monotonicity property of the probabilistic 
check in [7]. Consider two publishing vectors, 𝐩𝐩  and 𝐪𝐪 . 𝐩𝐩  is larger by 𝜖𝜖  in exactly one 
dimension: 𝑝𝑝𝑖𝑖

𝑗𝑗 = 𝑞𝑞𝑖𝑖
𝑗𝑗 + 𝜖𝜖. Assume that 𝐩𝐩 preserves 𝛿𝛿-privacy. It was proven in [7] that for all 

outputs 𝑂𝑂 and sensitive information 𝑠𝑠 ∈ 𝑆𝑆, the maximum posterior probability of 𝑒𝑒𝑗𝑗, 𝑃𝑃[𝑒𝑒𝑗𝑗|𝑂𝑂], 
does not increase when the publishing vector goes from 𝐩𝐩 to 𝐪𝐪. Thus, we have 

 
𝑃𝑃𝐪𝐪�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠�𝑂𝑂� − 𝑃𝑃�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠� = ∑ 𝐼𝐼(𝑖𝑖. 𝑥𝑥 = 𝑠𝑠)𝑃𝑃𝐪𝐪�𝑒𝑒𝑗𝑗 = 𝑖𝑖�𝑂𝑂�𝑞𝑞𝑖𝑖

𝑗𝑗
𝑖𝑖 − 𝑃𝑃�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠�

≤ ∑ 𝐼𝐼(𝑖𝑖. 𝑥𝑥 = 𝑠𝑠)𝑃𝑃𝐩𝐩�𝑒𝑒𝑗𝑗 = 𝑖𝑖�𝑂𝑂�𝑝𝑝𝑖𝑖
𝑗𝑗

𝑖𝑖 − 𝑃𝑃�𝑒𝑒𝑗𝑗.𝑥𝑥 = 𝑠𝑠�
≤ 𝑃𝑃𝐩𝐩�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠�𝑂𝑂� − 𝑃𝑃�𝑒𝑒𝑗𝑗. 𝑥𝑥 = 𝑠𝑠� ≤ 𝛿𝛿

 (23) 

Since the gap between posterior and prior probability does not increase when the publishing 
vector goes from 𝐩𝐩 to 𝐪𝐪, the privacy is preserved. In other words, privacy is an anti-monotone 
property. 
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The range of 𝐩𝐩 is [0,1]𝑛𝑛|𝔼𝔼|, which contains infinite vectors. We discretize the space [0,1] to 
[0,0.1,⋯ ,0.9,1]  and use a greedy algorithm, ALGP [15], to optimize 𝐩𝐩 , as shown in 
Algorithm 6. We call a privacy-preserving publishing vector 𝐩𝐩 an extreme point if increasing 
any dimension of 𝐩𝐩 will breach privacy. The idea of 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣ℎ is seeking all the extreme 
points that are maintained in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 by iteratively using binary search. Then, the 
publishing vector with the highest utility is chosen from 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and returned. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒 determines whether a publishing vector preserves privacy by checking 

𝛿𝛿-privacy. Thus, PA-HMM preserves 𝛿𝛿-privacy, as shown in the following proposition. 
Proposition 4: PA-HMM preserves 𝛿𝛿-privacy in Definition 4.  

Algorithm 6 vectorSearch 
Input: privacy requirement 𝛿𝛿, user model M, sensitive set S 
Output: publishing vector p 
1:   MaxTrueSet = ∅; Candidate = {(0,0,⋯ ,0)}; 
2:   while Candidate ≠ ∅ do 
3:       p ← some point in Candidate; 
4:       if privacyCheck(𝛿𝛿,𝑀𝑀,𝒑𝒑) = true then 
5:           for 𝑖𝑖 = 1 → 𝑛𝑛|𝔼𝔼| do 
6:               𝑙𝑙𝑙𝑙𝑙𝑙 ← 𝒑𝒑[𝑖𝑖]; 𝒑𝒑[𝑖𝑖] = 1; 
7:               if privacyCheck(𝛿𝛿,𝑀𝑀,𝒑𝒑) = true then continue; 
8:               end if 
9:               high = 1; 
10:             while high − low ≥ 0.1 do 
11:                 𝑚𝑚𝑚𝑚𝑚𝑚 ← (ℎ𝑖𝑖𝑖𝑖ℎ + 𝑙𝑙𝑙𝑙𝑙𝑙)/2;  𝒑𝒑[𝑖𝑖] ← 𝑚𝑚𝑚𝑚𝑚𝑚; 
12:                 if privacyCheck(𝛿𝛿,𝑀𝑀,𝒑𝒑) = true then  𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚; 
13:                 else  ℎ𝑖𝑖𝑖𝑖ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚; 
14:                 end if 
15:             end while 
16:         end for 
17:     end if 
18:     MaxTrueSet ← MaxTrueSet ∪ {𝒑𝒑}; 
19:     𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 ← ∅; 
20:     for all 𝒑𝒑′ ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 do 
21:         if 𝒑𝒑 dominates 𝒑𝒑′ then 
22:             for 𝑖𝑖 = 1 → 𝑛𝑛|𝔼𝔼| do 
23:                 𝒑𝒑′′ ← 𝒑𝒑′;𝒑𝒑′′[𝑖𝑖] ← 𝒑𝒑[𝑖𝑖] + 0.1; 
24:                 if 𝒑𝒑′′ is valid then 
25:                     𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 ∪ 𝒑𝒑′′; 
26:                 end if 
27:             end for 
28:         end if 
29:     end for 
30:     𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛; 
31: end while 
32: Select 𝒑𝒑 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀p with the highest utility; 
33: return 𝒑𝒑; 
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4.3 Comparison of PA-Markov and PA-HMM 

4.3.1 Utility 
We have proven that privacy is anti-monotone and utility is monotone; thus, we use a greedy 
search algorithm, ALGP, to maximize the publishing vector 𝑝𝑝. We optimize the publishing 
vector of PA-HMM. While PA-Markov is locally optimal, i.e., if the current information is 
published despite externalCheck deciding to suppress it, then the privacy may be breached if 
the temporary sequence is exactly the same as the final output. Although internalCheck can 
guarantee publishing as much information as possible, the whole algorithm, PA-Markov, is 
not globally optimal in utility. 

4.3.2 Efficiency 
We denote that 𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚{|𝐴𝐴|, |𝑇𝑇|, |𝐿𝐿|}. The time complexity of computing prior and posterior 
probability of PA-Markov are 𝑂𝑂(𝑛𝑛𝑚𝑚3). Sensitive set 𝑆𝑆 is given and we denote its size by |𝑆𝑆|. 
Since the innermost iteration of 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒  runs 𝑂𝑂(𝑛𝑛2𝑚𝑚|𝑆𝑆|)  times, the total time 
complexity of PA-Markov is 𝑂𝑂(𝑛𝑛3𝑚𝑚4|𝑆𝑆|). 

For PA-HMM, the running time of Gibbs sampling is 𝑂𝑂(𝑅𝑅𝑅𝑅𝑅𝑅), where 𝑅𝑅  refers to the 
number of iterations. Since we exploit a greedy binary search to maximize 𝑝𝑝, the number of 
calls to privacyCheck in vectorSearch is 𝑂𝑂(𝑛𝑛|𝔼𝔼|𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑)), where 𝑑𝑑 is the number of intervals 
we divide [0,1] into. The time complexity of prior and posterior probability estimation is 
𝑂𝑂(𝑛𝑛|𝔼𝔼|𝐾𝐾2) and 𝑂𝑂(𝑛𝑛|𝔼𝔼|2). In addition, privacyCheck iterates for 𝑂𝑂(𝑛𝑛|𝑆𝑆|) times. Since 𝐾𝐾 is 
usually considerably less than |𝔼𝔼|, the total running time of PA-HMM is 𝑂𝑂(𝑛𝑛3|𝔼𝔼|3|𝑆𝑆|𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑)). 

4.3.3 Speedup 
To speed up PA-Markov, we can further improve the procedures of dependence check: 

a) At position 𝑖𝑖, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 checks privacy breach by computing 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 on 
all the positions. Assume 𝑖𝑖′ is the nearest position before 𝑖𝑖 where the event is published, 
according to (15), the events after 𝑖𝑖′ does not affect the posterior probability of 𝑒𝑒𝑖𝑖″. 𝑥𝑥 = 𝑠𝑠 for 
all 𝑖𝑖″ ≤ 𝑖𝑖′ and all 𝑠𝑠. Thus, Line 3 in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 could be improved by: 

1: 𝑖𝑖′ ← the last position before 𝑖𝑖 where 𝑒𝑒𝑖𝑖′. 𝑥𝑥 is published 
2: for 𝑗𝑗 = 𝑖𝑖′ + 1 → 𝑛𝑛 do 
b) In 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒, each possible 𝑦𝑦 and each sensitive information 𝑠𝑠 ∈ 𝑆𝑆 are checked 

separately, therefore we can use data parallelism to further accelerate the process. Thus, Line 1 
to Line 2 in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 can be improved by: 

1: for each possible value 𝑦𝑦 parallel do 
2:  for each 𝑠𝑠 ∈ 𝑆𝑆 parallel do 
To speed up PA-HMM, we can run 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣ℎ offline since it is independent of the 

input activity trajectory. Then, we just need to start at Line 3 in Algorithm 4 online. Thus, the 
online running time is reduced to 𝑂𝑂(𝑛𝑛), which is acceptable for real-time applications. 

5. Evaluation 

5.1 Datasets 
A small-scale simulated dataset and two real-world datasets are built in our experiments. The 
simulated dataset (denoted by SD) is generated randomly, while the real-world datasets 
(accessible at https://github.com/PPATP/Campus-smart-card) are collected using the campus 

https://github.com/PPATP/Campus-smart-card
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smart card system of a university in China. In the system, hundreds of point of sale (POS) 
machines are set up where payment is needed (e.g., canteens, stores) or for check in/out (e.g., 
libraries, dormitory). When a student swipes smart card on POS machine, a record including 
timestamp, expense, location and some other metadata is saved temporarily in the POS 
machine and later uploaded to centralized database. We use these records as students’ activity 
trajectories in the experiment. We choose two datasets. One is collected from September to 
December 2011 (denoted by D11), and the other is from September to December 2015 
(denoted by D15). The statistics are shown in Table 3. 
 

Table 3. Statistics of the datasets 
 Number of 

activities 
Number of time 

intervals 
Number of 
locations 

Average activity 
trajectory length 

Number of 
users 

SD 4 3 8 50 10 
D11/D15 4 3 6 50 50 

 
Table 4. Experimental results on the simulated dataset 

delt
a 

Breach rate Utility Markov-based model HMM-based model 
PA-Mark

ov 
noMas

k 
nointern

al 
PA-HM

M 
noMas

k 
sensitiveaMa

sk 
PA-Mark

ov 
PA-HM

M 
0.1 0 0.244 0.564 0 0.201 0 0.387 0.88 
0.3 0 0.244 0.024 0 0.001 0 0.481 0.934 
0.5 0 0.244 0 0 0 0 0.482 0.936 
0.7 0 0.244 0 0 0 0 0.686 0.938 
0.9 0 0 0 0 0 0 0.968 0.938 

5.2 Baselines 
a) noMask. NoMask publishes raw activity trajectory without any suppression. According 

to the adversary model, the adversary knows this mechanism. Therefore the posterior 
probability of  𝑠𝑠 is: 

 𝑃𝑃[𝑒𝑒𝑖𝑖. 𝑥𝑥 = 𝑠𝑠|𝑂𝑂] = �1 𝑜𝑜𝑖𝑖 . 𝑥𝑥 = 𝑠𝑠
0 𝑜𝑜𝑖𝑖 . 𝑥𝑥 ≠ 𝑠𝑠 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 (24) 

b) sensitiveMask. SensitiveMask is a naive approach that suppresses an event when there is 
sensitive information in the event and publishes it if there is not. When a suppression occurs, 
the adversary knows that it has sensitive information, but does not know the exact event. Here, 
the HMM is also applied for updating adversary’s posterior probabilities. What the adversary 
observes is a new HMM 𝑀𝑀″. The initial state distribution and transition probabilities of 𝑀𝑀″ 
remain the same, while the emission probabilities are changed to: 
 𝑏𝑏𝑗𝑗(𝑘𝑘) = 𝑃𝑃[𝑜𝑜𝑖𝑖 = 𝑘𝑘|𝑒𝑒𝑖𝑖 = 𝑗𝑗] = �1 𝑘𝑘 =  NIL and ∃𝑗𝑗. 𝑥𝑥 ∈ 𝑆𝑆 or 𝑘𝑘 = 𝑗𝑗

0 others
 (25) 

for all 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛,𝑘𝑘 ∈ 𝔼𝔼 ∪ {NIL}, 𝑗𝑗 ∈ 𝔼𝔼. The posterior probability can be computed by (20). 
c) PA-Markov without an internal check. We use PA-Markov without an internal check 

(denoted as nointernal) to test whether internalCheck is necessary. NoInternal is the same as 
PA-Markov except for deleting Line 10 in Algorithm 1. 

5.3 Results on the simulated dataset 
We randomly choose an activity as sensitive information (|𝑆𝑆| = 1), and the experimental 
results on SD are shown in Table 4. Performing better than the baselines, the breach rates of 
PA-Markov and PA-HMM are always 0, which demonstrates that PA-Markov and PA-HMM 
preserve users’ privacy. Additionally, the breach rate of sensitiveMask is also 0, which means 
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that merely suppressing sensitive information is sufficient to preserve the privacy of SD. In 
Section 5.4, we conduct a more detailed analysis of the experimental results on D11 and D15 
and show that sensitiveMask sometimes causes breaches in users’ privacy. 

5.4 Results on the real-world datasets 

5.4.1 Privacy Breaches 
The breach rates of PA-Markov and PA-HMM are shown in Figs. 4, 5, 6 and 7. We conducted 
experiments on two types of sensitive information: 1) a sensitive activity, a sensitive time 
stamp and a sensitive location 2) a sensitive activity or a sensitive time stamp or a sensitive 
location. All the sensitive sets are chosen randomly. NoMask has a high breach rate even when 
𝛿𝛿 = 0.5. When 𝛿𝛿 is small, noInternal has a very high breach rate, which indicates the risk of 
internal dependence attacks by the adversary. PA-Markov considers both external and internal 
dependence and therefore, always preserves privacy. For the HMM-based user model, we find 
that PA-HMM also performs the best. Simply suppressing all the events with sensitive 
information merely lowers the breach rate but cannot guarantee that all the privacy is 
preserved. As shown in Figs. 5 and 7, the adversary can sometimes still infer sensitive 
information using the correlation between events. 
 

 
                              (a) Random a,t and l                                          (b) Random a or t or l 

Fig. 4. Breach rate of PA-Markov, noMask and nointernal on D11 

 
                             (a) Random a,t and l                                            (b) Random a or t or l 

Fig. 5. Breach rate of PA-HMM, noMask and sensitiveMask on D11 
 

Fig. 8 shows the distribution of published and suppressed data on D11 and D15. For 
PA-Markov, the bars show the fraction of sensitive or nonsensitive information in the whole 
dataset. For PA-HMM, since it can determine only whether to publish an event, the bars show 
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the fraction of events that contain sensitive information. We choose 𝛿𝛿 = 0.2 for PA-HMM 
and 𝛿𝛿 = 0.65  for PA-Markov and randomly tag sensitive information. PA-Markov and 
PA-HMM both publish some of the sensitive information or events with sensitive information. 
Based on Definition 4, publishing 𝑒𝑒𝑖𝑖 preserves privacy if the prior probability of 𝑠𝑠 exceeds 
1 − 𝛿𝛿  at position 𝑖𝑖 . To explain that, if the adversary is very sure about some sensitive 
information, publishing or not would not shake his/her belief. However, it is counterintuitive 
for PA-Markov and PA-HMM to suppress a large number of nonsensitive information or 
events without sensitive information. According to Definition 4, although these events 
preserves privacy at its position, publishing them will breach 𝛿𝛿-privacy at other positions. 
Fig. 8 again demonstrates that PA-Markov and PA-HMM can protect against correlation 
attacks. 

5.4.2 Utility 
The utility of output datasets (for simplicity, the utility of an algorithm and the utility of its 
output are synonymous) by varying 𝛿𝛿 is shown in Figs. 9 and 10. For PA-Markov, we test the 
utility of four types of sensitive information. For PA-HMM, we test the utility when the 
number of latent states varies (𝐾𝐾 = 4,6,8,10). We observe that the variation trends of utility 
under different settings are similar. When we enhance privacy preservation, the utility 
decreases. This result implies that we must sacrifice some utility to satisfy privacy 
requirements in practical use. One proper tradeoff is setting a different 𝛿𝛿 for different users. 
We can assign a low 𝛿𝛿 for those who care more about their privacy (e.g., famous singers, 
actors) and a high 𝛿𝛿 for those who care less about their privacy (e.g., civilians).  Contract 
theory seems to be a useful approach to balancing privacy and data utility [16].  

 
                               (a) Random a, t and l                                         (b) Random a or t or l 

Fig. 6. Breach rate of PA-Markov, noMask and nointernal on D15 

 
                              (a) Random a, t and l                                           (b) Random a or t or l 

Fig. 7. Breach rate of PA-HMM, noMask and sensitiveMask on D15 
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                                  (a) D11                                                         (b) D15 

Fig. 8. The composition of published and suppressed data 

5.4.3 Running time 
To compare the efficiency of PA-Markov, PA-HMM and the baselines, each algorithm is run 
for 10 times. Their average running time are shown in Table 5. PA-Markov and PA-HMM 
need much more time than sensitiveMask and noMask as they need multiple iterations while 
sensitiveMask and noMask take constant time. Additionally, after we conduct 
vectorSearching offline, the running time of PA-HMM is reduced significantly. 
 

 
                                        (a) D11                                                                 (b) D15 

Fig. 9. Privacy-utility tradeoff of PA-Markov 
 

 
                                        (a) D11                                                                   (b) D15 

Fig. 10. Privacy-utility tradeoff of PA-HMM 
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Table 5. Comparison of running time 
 noMask maskSensitive PA-Markov PA-HMM PA-HMM (online) 

D11 <1 ms <1 ms 1 m 3 m <1 ms 
D15 <1 ms <1 ms 58 s 3 m <1 ms 

6. Related Work 
Recent years saw many inspiring works on PPDP. We provide a brief introduction of these 
works and compare S-PPATP with their approaches from the aspects of user model, adversary 
model, privacy requirement and data quality. 

PPDP solutions can be broadly classified into two categories based on their attack principles 
[5]. The first category defends against linkage attacks, which considers that a privacy threat 
occurs when an attacker is able to link a record owner to a record in a published data set or to a 
sensitive attribute [17]. 𝑘𝑘-anonymity is a famous model to prevent linkage attack, which 
requires that each record is indistinguishable from at least k-1 other records. Li et al. [18] 
applied the partitioning-based and the clustering-based algorithms in the real-world privacy 
soccer fitness data publication to achieve the k-anonymity model. Gao et al. [19] propose a 
personalized 𝑘𝑘-anonymity model which take trajectory similarity and direction into account in 
the selection of anonymity set. Gurung et al. [20] and Dong et al. [21] adopted 
clustering-based anonymization algorithm to group similar trajectories and select 
representative trajectories. Their method can guarantee strict 𝑘𝑘-anonymity of published data, 
but probably reduced the utility of published data. Originally proposed for relational data, 
𝑘𝑘-anonymity does not make assumption on the patterns of victims’ data. Compared with these 
approaches, S-PPATP assumes that trajectory data indicate human mobility patterns which 
can be characterized by user model. 

Many works have proposed improved technique for 𝑘𝑘-anonymity. It is found that in some 
cases, another type of privacy leakage, homogeneity attack, may still exist in 𝑘𝑘-anonymity 
data [17]. To address homogeneity attack, 𝑙𝑙-diversity has been proposed, which requires each 
sensitive attribute has to possess at least 𝑙𝑙 distinct values in each anonymity group [9]. Wang 
et al. [22] proposed a novel privacy-preserving framework for LBS data publication. The 
framework considers the topological properties of the road network when providing 
privacy-preserving mechanisms for a single user and a batch of users. They also proposed two 
cloaking algorithms to achieve both 𝑘𝑘-anonymity and 𝑙𝑙-diversity. Zhu et al [23] proposed a 
noise technique to publish anonymized data and fulfilled the 𝑙𝑙-diversity requirements. Li. et al 
[24] proposed a data partitioning method in PPDP under the constraint of 𝑘𝑘-anonymity and 
𝑙𝑙-diversity. However, 𝑙𝑙-diversity does not prevent attribute linkage attacks when the overall 
distribution of a sensitive information is skewed [5][25]. As a result, some works used a more 
strict privacy model called 𝑡𝑡-closeness to anonymize published data [26], which requires the 
distribution of sensitive information in any anonymity group to be close to the distribution in 
the overall dataset. To sum up, 𝑘𝑘 -anonymity and corresponding improvement preserve 
privacy well only when the adversary has limited background knowledge about trajectory 
generator and provide undifferentiated protection for sensitive information. By contrast, 
S-PPATP solves a more serious problem that the adversary may have a background 
knowledge of user model and provides a flexible protection level by using 𝛿𝛿-privacy. 

The other category defends against probabilistic attack, which studies how the adversary 
changes the probabilistic belief on the privacy of a victim after accessing the published dataset 
[9]. Privacy preserving solutions of this category normally have a strong assumption on the 
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adversary’s background knowledge. Gotz et al. [7] originally assumed that the adversary 
knows both the temporal correlations and the publishing algorithm. They proposed a 
framework, MASTIT, to filter user data that preserves 𝛿𝛿-privacy. Li et al. [27] proposed a data 
publishing algorithm to prevent the attack based on a naive Markov user model. Gramaglia et 
al. [28] used both spatiotemporal generalization and suppression to ensure that the adversary 
gains little samples of the target user’s trajectory with a significant data loss. S-PPATP 
belongs to this category. Compared with these works, S-PPATP extends the boundary of 
sensitive information and strengthens the adversary’s power that he/she is aware of a victim’s 
hidden life style (topic) and he/she can infer sensitive information by internal dependence 
inside an event. Additionally, S-PPATP applies suppression without generalization to ensure 
that the published data make more sense. 
ϵ-Differential privacy is an extremely strict privacy model which was first proposed in [29]. 

Instead of comparing the prior probability and the posterior probability, ϵ-differential privacy 
proposes a strict requirement that the addition or removal of any single database record does 
not significantly influence the outcome of any inference. Some works applied ϵ-Differential 
privacy model to trajectory data publication [3][30][31]. ϵ-differential privacy seems to be an 
ultimate solution because it is proven that ϵ-differential privacy can protect against attackers 
with arbitrary background knowledge [29]. However, the privacy requirement is too rigorous 
for the LBS scenario [32]. Therefore, in S-PPATP, we relax the privacy requirement by 
ensuring that adversary’s belief in sensitive information does not increase too much without 
taking further data removal or addition into account.  

7. Conclusion and Future Work 
In this paper, we propose a solution for PPATP, S-PPATP, which consists of modeling, 

algorithm design and algorithm adjustment. Although S-PPATP is an effective approach to 
privacy-preserving activity trajectories publishing, it can be further improved on each step. 
During modeling, more sophisticated user models can be used to better describe user behavior 
patterns, and a more powerful adversary can be assumed to have more background knowledge. 
During algorithm design, since we have discussed that neither PA-Markov nor PA-HMM is 
globally optimal in utility, a hybrid of PA-Markov and PA-HMM may further enhance the 
utility. During algorithm adjustment, the privacy-utility tradeoff is an important issue for data 
publishers and can be further studied for more different application scenarios. 
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