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Abstract

This paper studies Bayesian pooling for analysis of categorical data from small ar-
eas. Many surveys consist of categorical data collected on a contingency table in each
area. Statistical inference for small areas requires considerable care because the subpop-
ulation sample sizes are usually very small. Typically we use the hierarchical Bayesian
model for pooling subpopulation data. However, the customary hierarchical Bayesian
models may specify more exchangeability than warranted. We, therefore, investigate
the effects of pooling in hierarchical Bayesian modeling for the contingency table from
small areas. In specific, this paper focuses on the methods of direct or indirect pool-
ing of categorical data collected on a contingency table in each area through Dirichlet
priors. We compare the pooling effects of hierarchical Bayesian models by fitting the
simulated data. The analysis is carried out using Markov chain Monte Carlo methods.

Keywords: Contingency table, Dirichlet prior, hierarchical Bayesian, Markov chain Monte
Carlo, pooling, small areas.

1. Introduction

In many surveys, the sample data consist of the categorical variables collected on a contin-
gency table in each small area. The analysis is performed in subpopulations corresponding to
small areas as well as whole population. We should take care of a precision which is affected
by the sample size in small area estimation. One way to resolve a precision problem is to
borrow the information from the neighboring areas via the hierarchical model. That is, we
can consider the pooling strategies for borrowing strength in small areas.

There has been a continuously increased interest in methods for pooling of data. Espe-
cially, Malec and Sedransk (1992) developed a Bayesian procedure for estimation of the
means for the specified experiments among a set of seemingly similar experiments. They
constructed the prior distribution for location parameter to reflect the their assumptions.
There are subsets of parameters such that the parameters with subscript for each subset
are very similar, and there are uncertainty about the composition of subsets of parameters.
They specify the prior distribution for parameter through conditioning on same subscript in
similar experiments. The proposed flexible prior distribution allows the intensity and nature
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of the pooling to be influenced by the sample data. After, Evans and Sedransk (1999) pro-
posed an alternative Bayesian model with covariates that is more flexible. And Evans and
Sedransk (2003) provided a fully Bayesian justification for the results in Malec and Sedransk.
In above three papers, their models have been extended with the same key concept which
is specified in the model using the same subscript in similar experiments. Recently Donson
(2009) developed methods for Bayesian nonparametric modeling of multivariate categori-
cal data using Dirichlet process mixtures of product multinomial models which allow local
pooling.

In this paper, we construct the hierarchical Bayesian pooling models with the Dirichlet
distributions as the prior distributions. The interested parameters are indirectly allowed a
borrowing strength from neighboring areas through the hyperparameters of the Dirichlet
distribution. In the other words, the common effect of responses about the total areas is re-
flected from the hyperparameters, while the detail fluctuations comes through a hierarchical
structure of the Bayesian model in each area. To investigate the pooling effects in hierarchi-
cal models, we consider the simulated contingency table which consists of categorical data in
the area. Recently Bayesian small area models in the contingency tables with nonresponses
have been studied in Woo and Kim (2015, 2016).

The outline of the remaining sections is as follows. In Section 2, we introduce hierarchical
Bayesian pooling models for the analysis of categorical data from small areas. In Section 3,
we study Bayesian inferences using the Markov chain Monte Carlo (MCMC) method. We
compare the results of numerical study in Section 4. Then we give our concluding remarks
in Section 5.

2. Model specification

We consider the I ×K contingency table with cell count nik which is a kth response in
ith areas, i = 1, · · · , I, k = 1, · · · ,K. Let πik denote the corresponding probability of each
unit cell. We assume that

ni|πi
iid∼ Multinominal(ni,πi) (2.1)

where ni = (ni1, · · · , niK) is the response vector, ni =
∑K
k=1 nik is total sum of responses,

and πi = (πi1, · · · , πiK) is the corresponding probability vector in ith area.
In the basic model (2.1), we assume that the parameter πi’s are composed of various

cluster. But we don’t know the cluster indicator for each πi through the information from
sample data only. Therefore we focus on the Bayesian inference of the parameters and their
cluster indicators at the same time. Our Bayesian pooling models are classified as the three
types according to priors for πi for i = 1, · · · , I. The three types of pooling models are as
follow:

1) No pooling πi
iid∼ Dirichlet(1);

2) Complete pooling π ∼ Dirichlet(1) with π1 = · · · = πI = π;

3) Adaptive pooling πi
iid∼ Dirichlet(µτ),

where µ = (µ1, ..., µK), 0 ≤ µk ≤ 1,
∑K
k=1 µk = 1 and τ > 0 are hyperparameters

for Dirichlet distribution and are assumed to have the noninformative and proper prior
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π(µ, τ) = (K − 1)!/(1 + τ)2. This prior is very similar to a half-Cauchy prior and can pre-
vent overestimation of scale parameters from our models. Recall that x|µ, τ ∼ Dirichlet(µτ)

has the density f(x|µ, τ) =
∏k
i=1 x

µiτ−1
i /D(µτ), 0 < xi < 1,

∑k
i=1 xi = 1 where D(µτ) =∏k

i=1 Γ(µiτ)/Γ(τ), 0 < µi < 1, τ > 0, is the Dirichlet function, also known as the multivari-
ate Beta function.

In model 1, we assume that the data are not absolutely pooling. In other words, the areas
are mutually independent and each πi for i = 1, · · · , I is concerned through each area’s data
only. Therefore, the Bayesian inference may be affected by data because the prior distribution
of πi is noninformative uniform Dirichlet distribution with parameter vector 1. Instead, the
model 2 is just the opposite. We assume that the entire data are completely pooled. We
can estimate one parameter using the entire data set. For the inference in complete pooling
model, the several separated areas are constructed as one grand area. And it can improve
the precisions since it allows a borrowing strength from all neighboring areas. On the other
hand, the model 3 constructs the hierarchical structure for the parameters. The first stage
of model 3 is not made by regional pooling. But, the pooling of data can be constructed
second stage of the model using the hyperparameter µ and τ . Entire data share the same
fixed effect, µτ , and the variation of parameters is dependent on the specific data in each
areas.

3. Bayesian inference

Let n = (n1, · · · ,nI) be the response matrix and π = (π1, · · · ,πI) be the proportion
parameter matrix for the model (2.1). And let Ωi = (πi,µ, τ) be the parameter space
corresponding to the ith area with πi, µ, and τ . Actually, the model 1 and 2 are a special
case of model 3 which is an adaptive pooling model with parameters µ and τ . That is, the
Bayesian inference for previous two models is deployed as model 3. In model 3, the joint
posterior density of the parameters given data is obtained in the usual way by combining
the likelihood and the prior distribution as follows.

π(Ω|n) ∝
{ I∏
i=1

f(n|πi)π(πi)
}
π(µ, τ)

∝
I∏
i=1

{ ni!∏I
l=1 nlk!

K∏
k=1

πnikik

1

D(µτ)

K∏
k=1

πµkτ−1ik

} (K − 1)!

(τ + 1)2

∝
I∏
i=1

{ 1

D(µτ)

K∏
k=1

πnik+µkτ−1ik

} (K − 1)!

(τ + 1)2
(3.1)

where Ω = Ω1 × Ω2 × · · · × ΩI , D(µ, τ) =
∏K
k=1 Γ(µkτ)/Γ(

∑K
k=1 µkτ), µ = (µ1, ..., µK),

0 ≤ µk ≤ 1,
∑K
k=1 µk = 1 and τ > 0.

To run the Gibbs sampler, we draw numerical values in the followings.

(a) Full conditional for πi, i = 1, ..., I: Draw

πi|ni,µ, τ ∼ Dirichlet(ni + µτ). (3.2)
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(b) Full conditional for µ: Draw

π(µ|n,π, τ) ∝
I∏
i=1

{Γ(
∑K
k=1 µkτ)∏K

k=1 Γ(µkτ)

K∏
k=1

πµkτ−1ik

}
(3.3)

where µ = (µ1, · · · , µK),
∑K
k=1 µk = 1, and 0 ≤ µk ≤ 1, k = 1, · · · ,K. Let µ(k) denote

the vector of parameters except the kth component µk. Then we can obtain the conditional
posterior density of µk given µ(k) in each stage. In fact, we must have to estimate the K−1
components of parameter, µ, sequentially. Then automatically calculate the Kth component
value of µ using µK = 1 −

∑K−1
k=1 µk. Using the conditional posterior density (3.3), we can

draw µk, k = 1, · · · ,K − 1 by grid method with support (0, 1−
∑K−1
k′=1,k′ 6=k µk′).

(c) Full conditional for τ : Draw

π(τ |n,π,µ) ∝
I∏
i=1

{Γ(
∑K
k=1 µkτ)∏K

k=1 Γ(µkτ)

K∏
k=1

πµkτ−1ik

} 1

(τ + 1)2
(3.4)

where τ > 0. We can use the grid method for τ also. Because the grid method can be used
at closed support, we transform τ to ρ = 1/(1 + τ), 0 < ρ < 1. Additionally, the Jacobian
is 1/ρ2. Then conditional posterior density of ρ can be written as follow.

π(ρ|n,π,µ) ∝
I∏
i=1

{Γ(
∑K
k=1 µk

1−ρ
ρ )∏K

k=1 Γ(µk
1−ρ
ρ )

K∏
k=1

π
µk

1−ρ
ρ −1

ik

}
. (3.5)

4. Numerical study

We applied the hierarchical Bayesian pooling models to analyze the simulated data set.
Our analysis was done based on the contingency tables with cell count for 3 category in 20
areas. First, we generate the finite populations of size N = 100 from Multinomial distribution
with probability π = (0.3, 0.2, 0.5) for 20 areas. Then the samples of size n = 20 are taken
from this finite population. We calculated the finite population proportion for simulated
data distribution in each areas using hierarchical Bayesian models with pooling structure.
Our finite population proportion is estimated by taking unseen part from Multinomial with
estimating parameter πi, i = 1, · · · , I (= 20) at each MCMC iterate. In detail, let Nik for
k = 1, 2, 3 be the total number of each level in ith area, but the value is unknown. On the
other hand, we know the value nik for the seen part in data. Then we compute the finite
population proportion (Pik) for i = 1, · · · , I using

Pik =
1

Ni

{
nik + (Nik − nik)

}
, k = 1, 2, 3 (4.1)

where Ni − ni is unseen part responding from Multinomial distribution with parameter π̂i
which is estimated by our MCMC in each model. Then the posterior means and standard
deviations of the Pik are obtained by the estimated empirical distribution of the Pik. We
use 5000 iterates to burn out the MCMC and take every 10th estimated value to obtain 500
iterates.
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In Table 4.1 and Table 4.2, we report the posterior mean and standard deviation of finite
population proportion from the three parametric models in 20 areas. A small posterior
standard deviation is first evidence of good performance of hierachical Bayesian pooling
models. The model 1 and 2 are the most extreme structures showing the influence of pooling
for the data. Of course, the posterior standard deviations for the model with complete pooling
are smaller than the model with no pooling since the data are used for only one parameter by
complete pooling structure. In the model 2, the interested parameters have a uninformative
prior, that is, uniform Dirichlet distribution. To provide the information of additional prior,
we used to build the model 3. In the adaptive pooling model, we have incorporated the fixed
effects based on data into the model. The fixed effect is indirectly estimated from entire data
in adaptive pooling model.

Table 4.1 Posterior means for the finite population proportion (P1, P2, P3) in simulated data with
P = (0.2, 0.3, 0.5)

Areas
P̂1 P̂2 P̂3

M1 M2 M3 M1 M2 M3 M1 M2 M3
1 0.12 0.26 0.18 0.30 0.23 0.25 0.58 0.51 0.57
2 0.17 0.27 0.21 0.22 0.22 0.19 0.61 0.52 0.60
3 0.17 0.27 0.21 0.39 0.25 0.30 0.44 0.48 0.49
4 0.21 0.27 0.24 0.31 0.23 0.24 0.48 0.49 0.52
5 0.22 0.28 0.23 0.30 0.23 0.24 0.48 0.49 0.52
6 0.21 0.28 0.23 0.13 0.19 0.14 0.67 0.53 0.63
7 0.21 0.28 0.24 0.17 0.20 0.17 0.62 0.52 0.59
8 0.26 0.29 0.26 0.26 0.22 0.22 0.48 0.49 0.52
9 0.26 0.29 0.26 0.34 0.24 0.27 0.40 0.47 0.47
10 0.26 0.29 0.26 0.21 0.21 0.18 0.53 0.50 0.55
11 0.31 0.30 0.29 0.22 0.21 0.19 0.48 0.49 0.52
12 0.31 0.30 0.28 0.17 0.20 0.17 0.53 0.50 0.55
13 0.35 0.31 0.31 0.12 0.19 0.14 0.53 0.50 0.55
14 0.35 0.31 0.31 0.21 0.21 0.19 0.43 0.48 0.50
15 0.39 0.32 0.34 0.17 0.20 0.17 0.44 0.48 0.49
16 0.39 0.32 0.34 0.08 0.18 0.11 0.53 0.50 0.55
17 0.39 0.32 0.34 0.17 0.20 0.17 0.44 0.48 0.50
18 0.40 0.32 0.34 0.29 0.23 0.24 0.31 0.45 0.42
19 0.43 0.33 0.37 0.13 0.19 0.14 0.44 0.48 0.50
20 0.52 0.35 0.41 0.04 0.17 0.09 0.44 0.48 0.50

Table 4.2 Posterior standard deviations for the finite population proportion (P1, P2, P3) in simulated
data with P = (0.2, 0.3, 0.5)

Areas
P̂1 P̂2 P̂3

M1 M2 M3 M1 M2 M3 M1 M2 M3
1 0.06 0.04 0.06 0.09 0.04 0.06 0.09 0.05 0.07
2 0.07 0.04 0.06 0.08 0.04 0.06 0.09 0.05 0.07
3 0.07 0.04 0.06 0.09 0.04 0.07 0.09 0.05 0.08
4 0.07 0.05 0.06 0.08 0.04 0.06 0.09 0.05 0.07
5 0.08 0.04 0.06 0.08 0.04 0.07 0.09 0.04 0.08
6 0.08 0.05 0.06 0.07 0.04 0.05 0.09 0.05 0.07
7 0.08 0.04 0.07 0.07 0.04 0.05 0.09 0.05 0.07
8 0.08 0.04 0.06 0.08 0.04 0.06 0.09 0.05 0.07
9 0.09 0.04 0.07 0.09 0.04 0.07 0.10 0.05 0.08
10 0.08 0.04 0.06 0.08 0.04 0.06 0.09 0.05 0.07
11 0.08 0.04 0.07 0.08 0.04 0.06 0.09 0.05 0.07
12 0.08 0.05 0.07 0.07 0.04 0.05 0.09 0.05 0.07
13 0.09 0.04 0.06 0.06 0.04 0.05 0.09 0.05 0.07
14 0.09 0.04 0.07 0.08 0.04 0.06 0.09 0.05 0.07
15 0.09 0.05 0.07 0.07 0.04 0.06 0.09 0.05 0.07
16 0.09 0.05 0.07 0.05 0.04 0.05 0.09 0.05 0.07
17 0.09 0.05 0.07 0.07 0.04 0.06 0.09 0.05 0.08
18 0.09 0.04 0.07 0.08 0.04 0.07 0.08 0.05 0.08
19 0.09 0.05 0.07 0.06 0.04 0.05 0.09 0.05 0.08
20 0.09 0.04 0.08 0.04 0.04 0.05 0.09 0.05 0.08
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For the comparison of models, we will calculate the two measures to compare the perfor-
mance each models. First, we calculate the deviance information criterion (DIC) which is a
typical Bayesian model choice criterion to compare with the hierarchical Bayesian models.
Second, we calculate the logarithmic conditional predictive ordinate (LCPO) for evaluating
the three model performance, which is a comparison method using a cross validation. For
convenience of computation, we calculated the average of LCPO proposed by Gneiting and
Raftery (2007) as follows.

LCPO = −1

I

I∑
i=1

log(ĈPOi) (4.2)

where ĈPOi =
∑H
h=1 whP (Y = y | Ω(h)) for i = 1, · · · , I, wh =

∑H
h=1 f(Y=y|Ω(h)

)

f(Y=y|Ω(h)
)

, P (Y =

y | Ω(h)) is likelihood of a single observation given parameter Ω(h), and h = 1, · · · , H
denote the iterates from the MCMC result under the hierachical Bayesian pooling model.
The average of LCPO measures the predictive ability of the models. The lower values of the
mean of LCPO appear a better performance of the models.

Table 4.3 Comparison of DIC and LCPO under three different models

measures model 1 model 2 model 3

LCPO 13.54 12.83 12.90
DIC 839.8 823.1 825.7

As a result for MCMC, we have calculated the two measures to compare the models. In
Table 4.3, we can show the value of two measures for each hierarchical Bayesian pooling
model. Although the model 3 is more complicated than other two models, the performance
is shown the similar value with model 2 which has the only one parameter for all areas.
It means the performance of model 3 with adaptive pooling effect is a pretty good for our
simulated data although the dimension of parameter space is the biggest.

The posterior densities of three models are shown in Figure 4.1. The density of model 1 is
probably more spread out than other models. The case of model 2 has a better precision than
model 1, but the difference from true parameter value is larger. In model 3, the density of
posterior has a distinct advantage over most other models. According to the indirect pooling
effect, we can increase the precision of our model and decrease the bias from true value.

2 3 

Figure 4.1 Comparison of densities under three different prior specifications
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We have monitored the convergence of the Gibbs sampler using trace plots, autocorrela-
tion plots and ergodic mean plots. The trace plot, iteration versus time, gives information
about how long a burn-in period is required to remove the effect of initial values. The auto-
correlation plots display dependence in the chain, thus in the plots high correlations between
long lags indicate a poor mixing chain. The ergodic mean is stabilized after some iterations,
which is an indication of the convergence of the algorithm. Graphical diagnostics for gener-
ated values of the probability parameter for the first area are shown is Figure 4.2, 4.3, and
4.4.

Figure 4.2 Trace plots of π1 for model 1

Figure 4.3 Ergodic mean plots of π1 for model 1

Figure 4.4 Autocorrelation plots of π1 for model 1
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The Geweke test compares the means from the early part and latter part of the chain by
using a z-score statistic, where the the null hypothesis is that the chain is stationary. The
Z-scores of Geweke test are smaller than ±2 and the p-values which are corresponding to
test statistics are also nonsignificant for parameters in all models.

Figure 4.5 Z-scores of Geweke test for π1 for model 1

5. Concluding remarks

In this paper, we construct the hierarchical Bayesian pooling models with the Dirichlet
priors for contingency tables from small areas. We assume that the counts are from multi-
nomial distributions with probability parameters in each area. The priors for probability
parameters decide the degree of pooling for data. The models 1 and 2 assume extremely
pooled case. In model 1, the data are not pooled at all and the inference is performed from
each area. But, the entire data are completely pooled in model 2. In model 2, the several
separated areas are regarded as one grand area. The number of parameters in model 1 can
be diminished substantially than the number of parameters in model 1. As a result, the
pooling of data may increase the precision of the model. On the other hand, the model 3
is constructed the hierarchical structure for the parameter. The data is pooled by hyperpa-
rameter, indirectly. Of course, the locally pooled effects for each area are reflected by the
parameters in hierarchical Bayesian model.

For the comparison of the models, we generate the simulated data which is from the
multinomial distribution with parameter π = (0.3, 0.2, 0.5) for 20 areas. The sample data
is 20 percent of simulated population. Then we applied the hierarchical Bayesian pooling
models to analyze the simulated data set using MCMC algorithm. To compare the model
performance, we calculated DIC and LCPO. Although the model 3 which is hierarchical
Bayesian model with pooling structure has an biggest dimensional parameter space, the
performance is quite good among three models.
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